As a final illustration, find the value of \[\underset{x\to 1}{\mathop{\lim }}\,f\left( x \right)\] where
\[f\left( x \right)=\left\{ \begin{matrix}
x+2,x\ne 1 \\
0,x=1 \\
\end{matrix} \right.\]
Last updated date: 19th Mar 2023
•
Total views: 305.7k
•
Views today: 7.85k
Answer
305.7k+ views
Hint: The limit of a function exists only if left hand limit and right hand limit exist and both are equal.
Also, the value of the limit will be equal to the value of the right hand limit and (or) the left hand limit.
We know, the limit of a function exists only if the left hand limit and right hand limit exist and both are equal.
So, first, we will find the left hand limit of the function \[f(x)\] at \[x=1\].
We know, the left hand limit of a function\[f\left( x \right)\] at the point \[x=a\] is given as
\[\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right)\]
So , the left hand limit of the function\[f\left( x \right)\] at the point\[x=1\] is given as
\[\underset{h\to 0}{\mathop{\lim }}\,f\left( 1-h \right)\]
Now, we know h is a very small quantity and subtracting h from 1 will give a number less than 1 but very close to 1. But, since the number is not equal to 1, so, \[f\left( 1-h \right)=1-h+2\]
So, \[\underset{h\to 0}{\mathop{\lim }}\,f\left( 1-h \right)=\underset{h\to 0}{\mathop{\lim }}\,1-h+2=1-0+2=3\]
Now, we will find the right hand limit of the function\[f\left( x \right)\] at the point \[x=1\].
We know right hand limit of a function \[f\left( x \right)\] at \[x=a\] is given by
\[R.H.L=\underset{h\to 0}{\mathop{\lim }}\, f\left( a+h \right)\]
So, the right hand limit of the function \[f\left( x \right)\] at the point \[x=1\] is given by
\[\underset{h\to 0}{\mathop{\lim }}\, f\left( 1+h \right)\]
Now, we know h is a very small number. So, 1+h will be slightly greater than 1 and not equal to 1. So, \[f\left( 1+h \right)=1+h+2\]
So, \[\underset{h\to 0}{\mathop{\lim }}\,f\left( 1+h \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 1+h+2 \right)=3\]
We can clearly see that both the left hand limit and the right hand limit of the function \[f\left( x \right)\] exist at the point \[x=1\].
Also, the left hand limit and the right hand limit of the function \[f\left( x \right)\] at the point \[x=1\] are equal.
Since, the value of \[L.H.L=R.H.L\] at \[x=1\], hence, limit of the function \[f\left( x \right)\] exists at \[x=1\] and the value of limit of the function \[f\left( x \right)\]at \[x=1\] is \[3\].
So, \[\underset{x\to 1}{\mathop{\lim }}\,f\left( x \right)=3\]
Note: Graph of \[f\left( x \right)=\left\{ \begin{matrix}
x+2,x\ne 1 \\
0,x=1 \\
\end{matrix} \right.\] is given as
From the graph we can see, just slightly to the left of \[x=1\] and slightly to the right of \[x=1\], the value of \[f\left( x \right)\] is approximately equal to 3.
Hence, the value of \[\underset{x\to 1}{\mathop{\lim }}\,f\left( x \right)=3\].
Also, the value of the limit will be equal to the value of the right hand limit and (or) the left hand limit.
We know, the limit of a function exists only if the left hand limit and right hand limit exist and both are equal.
So, first, we will find the left hand limit of the function \[f(x)\] at \[x=1\].
We know, the left hand limit of a function\[f\left( x \right)\] at the point \[x=a\] is given as
\[\underset{h\to 0}{\mathop{\lim }}\,f\left( a-h \right)\]
So , the left hand limit of the function\[f\left( x \right)\] at the point\[x=1\] is given as
\[\underset{h\to 0}{\mathop{\lim }}\,f\left( 1-h \right)\]
Now, we know h is a very small quantity and subtracting h from 1 will give a number less than 1 but very close to 1. But, since the number is not equal to 1, so, \[f\left( 1-h \right)=1-h+2\]
So, \[\underset{h\to 0}{\mathop{\lim }}\,f\left( 1-h \right)=\underset{h\to 0}{\mathop{\lim }}\,1-h+2=1-0+2=3\]
Now, we will find the right hand limit of the function\[f\left( x \right)\] at the point \[x=1\].
We know right hand limit of a function \[f\left( x \right)\] at \[x=a\] is given by
\[R.H.L=\underset{h\to 0}{\mathop{\lim }}\, f\left( a+h \right)\]
So, the right hand limit of the function \[f\left( x \right)\] at the point \[x=1\] is given by
\[\underset{h\to 0}{\mathop{\lim }}\, f\left( 1+h \right)\]
Now, we know h is a very small number. So, 1+h will be slightly greater than 1 and not equal to 1. So, \[f\left( 1+h \right)=1+h+2\]
So, \[\underset{h\to 0}{\mathop{\lim }}\,f\left( 1+h \right)=\underset{h\to 0}{\mathop{\lim }}\,\left( 1+h+2 \right)=3\]
We can clearly see that both the left hand limit and the right hand limit of the function \[f\left( x \right)\] exist at the point \[x=1\].
Also, the left hand limit and the right hand limit of the function \[f\left( x \right)\] at the point \[x=1\] are equal.
Since, the value of \[L.H.L=R.H.L\] at \[x=1\], hence, limit of the function \[f\left( x \right)\] exists at \[x=1\] and the value of limit of the function \[f\left( x \right)\]at \[x=1\] is \[3\].
So, \[\underset{x\to 1}{\mathop{\lim }}\,f\left( x \right)=3\]
Note: Graph of \[f\left( x \right)=\left\{ \begin{matrix}
x+2,x\ne 1 \\
0,x=1 \\
\end{matrix} \right.\] is given as

From the graph we can see, just slightly to the left of \[x=1\] and slightly to the right of \[x=1\], the value of \[f\left( x \right)\] is approximately equal to 3.
Hence, the value of \[\underset{x\to 1}{\mathop{\lim }}\,f\left( x \right)=3\].
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE
