
Area under a $v-t$ graph represents a physical quantity which has the unit ?
Answer
506.7k+ views
Hint: Velocity is a vector quantity which has magnitude as well as direction while displacement is also a vector quantity which has magnitude and direction while scalar quantities only have magnitude and no direction.
Complete step by step answer:
Area under the v-t graph means the graph is drawn to show the relation between velocity and time.
Velocity is the rate of change of displacement that means change in displacement per unit time.
$v=\dfrac{ds}{dt}$
It can be written as:
$ds=vdt$
Take both side integral, we get
$\int{d}s=\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{vdt}$
$\Rightarrow s=\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{vdt}$
$\Rightarrow s=v({{t}_{2}}-{{t}_{1}})$
Integration of $vdt$ shows area under v-t graph.
From the above analysis we can say the area under the v-t graph shows displacement. We cannot say the area of the v-t graph shows distance because distance is a scalar quantity and velocity is a vector quantity, so the area of the v-t graph has magnitude as well as direction. It means that the area of the v-t graph shows a vector quantity. The S.I unit of velocity is $\dfrac{meter}{\sec ond}(\dfrac{m}{s})$ and the S.I unit of time is $\sec ond(s)$.
Unit of the area under v-t graph is ,
$\text{area under v-t graph }=\text{Velocity}\times \text{Time}$
$\Rightarrow \text{area under v-t graph }=(\dfrac{m}{s})\times (s)$
$\therefore \text{area under v-t graph }=m$
Hence, area under the v-t graph shows displacement and its S.I unit is meters.
Note:We should know units of all physical quantities like in the above question we take units of velocity is $\dfrac{meter}{\sec ond}(\dfrac{m}{s})$. We should know some basic concepts of integration which are used in the above question.
Complete step by step answer:
Area under the v-t graph means the graph is drawn to show the relation between velocity and time.
Velocity is the rate of change of displacement that means change in displacement per unit time.
$v=\dfrac{ds}{dt}$
It can be written as:
$ds=vdt$
Take both side integral, we get
$\int{d}s=\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{vdt}$
$\Rightarrow s=\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{vdt}$
$\Rightarrow s=v({{t}_{2}}-{{t}_{1}})$
Integration of $vdt$ shows area under v-t graph.
From the above analysis we can say the area under the v-t graph shows displacement. We cannot say the area of the v-t graph shows distance because distance is a scalar quantity and velocity is a vector quantity, so the area of the v-t graph has magnitude as well as direction. It means that the area of the v-t graph shows a vector quantity. The S.I unit of velocity is $\dfrac{meter}{\sec ond}(\dfrac{m}{s})$ and the S.I unit of time is $\sec ond(s)$.
Unit of the area under v-t graph is ,
$\text{area under v-t graph }=\text{Velocity}\times \text{Time}$
$\Rightarrow \text{area under v-t graph }=(\dfrac{m}{s})\times (s)$
$\therefore \text{area under v-t graph }=m$
Hence, area under the v-t graph shows displacement and its S.I unit is meters.
Note:We should know units of all physical quantities like in the above question we take units of velocity is $\dfrac{meter}{\sec ond}(\dfrac{m}{s})$. We should know some basic concepts of integration which are used in the above question.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

