
What are the oxidation states of phosphorus in the following compounds?
\[{{H}_{3}}P{{O}_{2}}\],\[{{H}_{3}}P{{O}_{4}}\] , $M{{g}_{2}}{{P}_{2}}{{O}_{7}}$, $P{{H}_{3}}$, \[HP{{O}_{3}}\]
(a) \[+1,\text{ }+3\text{ },+3\text{ },+3\text{ },+5\]
(b)\[+3,\text{ }+3\text{ },+5\text{ },+5\text{ },+5\]
(c) \[+1,\text{ }+2\text{ },+3\text{ },+5,+5\]
(d) \[+1,\text{ }+5\text{ },+5\text{ },-3\text{ },+5\]
Answer
551.1k+ views
Hint: To calculate the oxidation number of P in all of the above compounds, we should know the oxidation number of the other atoms in them i.e. the oxidation number of\[H=\text{ }+1\] , the oxidation number of \[O=\text{ }-2\] , the oxidation number of \[Mg=\text{ }+2\] etc. Now, with the help of these oxidation numbers we can easily find the oxidation number of P .
Complete step by step answer:
By the term oxidation number, we simply mean the total number electrons in the valence shell of an atom when it loses or gains the electrons while undergoing the chemical reaction.
Now, let’s find the oxidation states of the given compounds.
1.\[{{H}_{3}}P{{O}_{2}}\]
Let, the Oxidation state of \[P=x\]
Oxidation state of \[H=\text{ }+3\]
Oxidation state of \[O=\text{ }2\left( -2 \right)=-4\]
Oxidation state of P in \[{{H}_{3}}P{{O}_{2}}\] is
\[\begin{array}{*{35}{l}}
\Rightarrow 3 + x - 4 = 0 \\
~\Rightarrow ~x - 1 = 0 \\
~\Rightarrow x=\text{ }+1 \\
\end{array}\]
2. \[{{H}_{3}}P{{O}_{4}}\]
Let, the Oxidation state of \[P=x\]
Oxidation state of \[H=\text{ }+3\]
Oxidation state of \[O=\text{ 4}\left( -2 \right)=-8\]
Oxidation state of P in \[{{H}_{3}}P{{O}_{4}}\] is
\[\begin{array}{*{35}{l}}
\Rightarrow 3+x-8=0 \\
~\Rightarrow x-5=0 \\
~\Rightarrow x=\text{ }+5 \\
\end{array}\]
3.$M{{g}_{2}}{{P}_{2}}{{O}_{7}}$
Let, the Oxidation state of \[P=x\]
Oxidation state of \[Mg = 2(+2) = +4\]
Oxidation state of \[O=\text{ 7}\left( -2 \right)=-14\]
Oxidation state of P in $M{{g}_{2}}{{P}_{2}}{{O}_{7}}$ is
\[\begin{align}
& \Rightarrow 4 + 2x - 14 = 0\\
& \Rightarrow 2x - 10 = 0\\
& \Rightarrow 2x = \text{ }10\\
& \Rightarrow x = ~\dfrac{10}{2}\\
& \Rightarrow x = \text{ }+5 \\
\end{align}\]
4. $P{{H}_{3}}$
Let, the Oxidation state of \[P=x\]
Oxidation state of \[H=\text{ }+3\]
Oxidation state of P in $P{{H}_{3}}$ is
\[\begin{array}{*{35}{l}}
\Rightarrow x+3=0 \\
\Rightarrow x=\text{ }-3 \\
\end{array}\]
5. \[HP{{O}_{3}}\]
Let, the Oxidation state of \[P=x\]
Oxidation state of \[H=\text{ }+1\]
Oxidation state of \[O=\text{ 3}\left( -2 \right)=-6\]
Oxidation state of P in \[HP{{O}_{3}}\] is
\[\begin{array}{*{35}{l}}
\Rightarrow 1 + x - 6 = 0 \\
~\Rightarrow x - 5 = 0 \\
~\Rightarrow x=\text{ }+5 \\
\end{array}\]
So, the oxidation states of P in \[{{H}_{3}}P{{O}_{2}}\],\[{{H}_{3}}P{{O}_{4}}\] , $M{{g}_{2}}{{P}_{2}}{{O}_{7}}$, $P{{H}_{3}}$, \[HP{{O}_{3}}\] are \[+1,\text{ }+5\text{ },+5\text{ },-3\text{ }and\text{ }+5\] respectively.
The correct answer is option “D” .
Note: The oxidation state of any free element is always zero, for monatomic ions it is the same as the charge on them. In peroxides , it has an oxidation number as 1 and for polyatomic ions it is equal to the net charge of the ion.
Complete step by step answer:
By the term oxidation number, we simply mean the total number electrons in the valence shell of an atom when it loses or gains the electrons while undergoing the chemical reaction.
Now, let’s find the oxidation states of the given compounds.
1.\[{{H}_{3}}P{{O}_{2}}\]
Let, the Oxidation state of \[P=x\]
Oxidation state of \[H=\text{ }+3\]
Oxidation state of \[O=\text{ }2\left( -2 \right)=-4\]
Oxidation state of P in \[{{H}_{3}}P{{O}_{2}}\] is
\[\begin{array}{*{35}{l}}
\Rightarrow 3 + x - 4 = 0 \\
~\Rightarrow ~x - 1 = 0 \\
~\Rightarrow x=\text{ }+1 \\
\end{array}\]
2. \[{{H}_{3}}P{{O}_{4}}\]
Let, the Oxidation state of \[P=x\]
Oxidation state of \[H=\text{ }+3\]
Oxidation state of \[O=\text{ 4}\left( -2 \right)=-8\]
Oxidation state of P in \[{{H}_{3}}P{{O}_{4}}\] is
\[\begin{array}{*{35}{l}}
\Rightarrow 3+x-8=0 \\
~\Rightarrow x-5=0 \\
~\Rightarrow x=\text{ }+5 \\
\end{array}\]
3.$M{{g}_{2}}{{P}_{2}}{{O}_{7}}$
Let, the Oxidation state of \[P=x\]
Oxidation state of \[Mg = 2(+2) = +4\]
Oxidation state of \[O=\text{ 7}\left( -2 \right)=-14\]
Oxidation state of P in $M{{g}_{2}}{{P}_{2}}{{O}_{7}}$ is
\[\begin{align}
& \Rightarrow 4 + 2x - 14 = 0\\
& \Rightarrow 2x - 10 = 0\\
& \Rightarrow 2x = \text{ }10\\
& \Rightarrow x = ~\dfrac{10}{2}\\
& \Rightarrow x = \text{ }+5 \\
\end{align}\]
4. $P{{H}_{3}}$
Let, the Oxidation state of \[P=x\]
Oxidation state of \[H=\text{ }+3\]
Oxidation state of P in $P{{H}_{3}}$ is
\[\begin{array}{*{35}{l}}
\Rightarrow x+3=0 \\
\Rightarrow x=\text{ }-3 \\
\end{array}\]
5. \[HP{{O}_{3}}\]
Let, the Oxidation state of \[P=x\]
Oxidation state of \[H=\text{ }+1\]
Oxidation state of \[O=\text{ 3}\left( -2 \right)=-6\]
Oxidation state of P in \[HP{{O}_{3}}\] is
\[\begin{array}{*{35}{l}}
\Rightarrow 1 + x - 6 = 0 \\
~\Rightarrow x - 5 = 0 \\
~\Rightarrow x=\text{ }+5 \\
\end{array}\]
So, the oxidation states of P in \[{{H}_{3}}P{{O}_{2}}\],\[{{H}_{3}}P{{O}_{4}}\] , $M{{g}_{2}}{{P}_{2}}{{O}_{7}}$, $P{{H}_{3}}$, \[HP{{O}_{3}}\] are \[+1,\text{ }+5\text{ },+5\text{ },-3\text{ }and\text{ }+5\] respectively.
The correct answer is option “D” .
Note: The oxidation state of any free element is always zero, for monatomic ions it is the same as the charge on them. In peroxides , it has an oxidation number as 1 and for polyatomic ions it is equal to the net charge of the ion.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

