
When you are given two sides of a right triangle, how do you find the third side?
Answer
539.4k+ views
Hint: We know that the right-angled triangle has one of the angles to be equal to $90^\circ $, here we are also given the two sides of the triangle and here third side of the triangle can be calculated by using the Pythagorean theorem or by using the laws of Sines.
Complete step-by-step solution:
First of all draw the right angled triangle and entitle it with A, B and C.
By using the Pythagoras theorem which states that in any right angled triangle the square of the hypotenuse is the sum of the square of the adjacent side and the square of the opposite side.
$A{C^2} = A{B^2} + B{C^2}$ . Hence, if we know measures of any two sides of the triangle then we can find out the measure of the third side by using the above equation.
Note: We can find the measure of the third side by using the Law of Sines.
i) First of all set up the triangle and mark the angles and the sides of the triangle.
The side opposite the angle is matched with the angle. Label “a” to the side opposite to angle A, similarly the side across from angle B as b and the side opposite to the angle C as “c” as shown below.
ii) The equation to find out the third unknown side.
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}$
iii) Calculate the unknown angle and then find the required unknown length.
Complete step-by-step solution:
First of all draw the right angled triangle and entitle it with A, B and C.
By using the Pythagoras theorem which states that in any right angled triangle the square of the hypotenuse is the sum of the square of the adjacent side and the square of the opposite side.
$A{C^2} = A{B^2} + B{C^2}$ . Hence, if we know measures of any two sides of the triangle then we can find out the measure of the third side by using the above equation.
Note: We can find the measure of the third side by using the Law of Sines.
i) First of all set up the triangle and mark the angles and the sides of the triangle.
The side opposite the angle is matched with the angle. Label “a” to the side opposite to angle A, similarly the side across from angle B as b and the side opposite to the angle C as “c” as shown below.
ii) The equation to find out the third unknown side.
$\dfrac{a}{{\sin A}} = \dfrac{b}{{\sin B}} = \dfrac{c}{{\sin C}}$
iii) Calculate the unknown angle and then find the required unknown length.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

