Answer
Verified
494.4k+ views
Hint: First of all, get the metal sheet required by finding the total surface area of the open box that is S = 2 (bh + lh) + lb and then multiply twice of this area with cost to paint per \[{{\text{m}}^{2}}\] to get the total cost of the paint required.
Complete step-by-step answer:
We are given an open box whose length, breadth and height are 1.5 m, 1 m and 1 m respectively. We have to find the metal sheet required to make this box. Also, the inside and outside surface area of the box is painted at a rate of 150 rupees/\[{{\text{m}}^{2}}\]. We have to find the cost to paint the box.
First all, we have to find the sheet required to make this box. To get the total sheet required, we have to find the total surface area of the given box.
Let us consider the surface area of the box to be S.
We know that this box is in the shape of a cuboid. So, the total surface area of cuboid = 2 (lb + bh + hl) where l, b and h are the length, breadth and height of the cuboid.
But as we are given that this box is an open box that is it is open at the top. So, we must subtract the area of the upper face from the total surface area of the cuboid to get the required surface area of the given box. So, we get
Surface area of box (S) = 2 (lb + bh + hl) – (Area of the upper face)
We know that area of the upper face of box = l x b
So, we get, S = 2(lb + bh + hl) – lb
Therefore, we get surface area of the box (S) = 2 (bh + hl) + lb …..(1)
Now, we know that the metal sheet required = Surface area of the box
So now, we substitute the length of the box = 1.5 m, breadth of box = 1 m and height of the box = 1 m in equation (1) to get the metal sheet required. So, we get,
S = Metal sheet required \[=2\left[ \left( 1\times 1+1\times 1.5 \right)+\left( 1\times 1.5 \right) \right]\text{ }{{\text{m}}^{2}}\]
\[S=\left[ 2\left( 1+1.5 \right)+1.5 \right]\text{ }{{\text{m}}^{2}}\]
\[S=6.5\text{ }{{\text{m}}^{2}}\]
So, we get the metal sheet required to make the given box equal to 6.5 sq.m.
Now, we are given that the inside and outside surface area of the box is painted. So, we get,
The total area of the box to be painted = Inside the surface area of the box + outside surface area of the box
As we know that the inside surface area = outside surface area = S for this box, so we get,
Total area of the box to be painted = S + S = 2S.
By substituting the value of \[S=6.5{{\text{m}}^{2}}\], we get,
The total area of the box to be painted = \[2\times 6.5{{\text{m}}^{2}}=13{{\text{m}}^{2}}\].
We are given that cost to paint the box = \[\text{Rs}\text{.150/}{{\text{m}}^{2}}\]
So, we get the cost to paint the outside and inside surface area of the box \[=\text{Rs}\left( 150\times 13 \right)=\text{Rs}.1950\]
Therefore, we get the total cost to paint the box equal to Rs.1950.
Note: Here, many students forget to subtract the area of the upper face of the cuboid box. So, this must be kept in mind whenever the box is open. Also, students must note that we have to paint both inside and outside of the box. So, we have to add the surface area twice to get the area to be painted. So, students should keep this point in mind.
Complete step-by-step answer:
We are given an open box whose length, breadth and height are 1.5 m, 1 m and 1 m respectively. We have to find the metal sheet required to make this box. Also, the inside and outside surface area of the box is painted at a rate of 150 rupees/\[{{\text{m}}^{2}}\]. We have to find the cost to paint the box.
First all, we have to find the sheet required to make this box. To get the total sheet required, we have to find the total surface area of the given box.
Let us consider the surface area of the box to be S.
We know that this box is in the shape of a cuboid. So, the total surface area of cuboid = 2 (lb + bh + hl) where l, b and h are the length, breadth and height of the cuboid.
But as we are given that this box is an open box that is it is open at the top. So, we must subtract the area of the upper face from the total surface area of the cuboid to get the required surface area of the given box. So, we get
Surface area of box (S) = 2 (lb + bh + hl) – (Area of the upper face)
We know that area of the upper face of box = l x b
So, we get, S = 2(lb + bh + hl) – lb
Therefore, we get surface area of the box (S) = 2 (bh + hl) + lb …..(1)
Now, we know that the metal sheet required = Surface area of the box
So now, we substitute the length of the box = 1.5 m, breadth of box = 1 m and height of the box = 1 m in equation (1) to get the metal sheet required. So, we get,
S = Metal sheet required \[=2\left[ \left( 1\times 1+1\times 1.5 \right)+\left( 1\times 1.5 \right) \right]\text{ }{{\text{m}}^{2}}\]
\[S=\left[ 2\left( 1+1.5 \right)+1.5 \right]\text{ }{{\text{m}}^{2}}\]
\[S=6.5\text{ }{{\text{m}}^{2}}\]
So, we get the metal sheet required to make the given box equal to 6.5 sq.m.
Now, we are given that the inside and outside surface area of the box is painted. So, we get,
The total area of the box to be painted = Inside the surface area of the box + outside surface area of the box
As we know that the inside surface area = outside surface area = S for this box, so we get,
Total area of the box to be painted = S + S = 2S.
By substituting the value of \[S=6.5{{\text{m}}^{2}}\], we get,
The total area of the box to be painted = \[2\times 6.5{{\text{m}}^{2}}=13{{\text{m}}^{2}}\].
We are given that cost to paint the box = \[\text{Rs}\text{.150/}{{\text{m}}^{2}}\]
So, we get the cost to paint the outside and inside surface area of the box \[=\text{Rs}\left( 150\times 13 \right)=\text{Rs}.1950\]
Therefore, we get the total cost to paint the box equal to Rs.1950.
Note: Here, many students forget to subtract the area of the upper face of the cuboid box. So, this must be kept in mind whenever the box is open. Also, students must note that we have to paint both inside and outside of the box. So, we have to add the surface area twice to get the area to be painted. So, students should keep this point in mind.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it