
An iron rod appears to be $1m$ long when measured by a brass scale that is correct at both the rods at the time of observation being at ${20^0}C$ . Find the length of the iron rod at ${100^0}C$. ( ${\alpha _{iron}} = 1.2 \times {10^{ - 5}}{C^{ - 1}}$ and ${\alpha _{brass}} = 2 \times {10^{ - 5}}{C^{ - 1}}$ )
Answer
507k+ views
Hint:On heating or raising the temperature of an iron rod its length gets increased due to heating effect on its molecular level and the variation of change in length with temperature is given as $\Delta L = L\alpha \Delta T$ where, $\alpha $ is called coefficient of thermal linear expansion.
Complete step by step answer:
Let $L$ be the length of rod at ${20^0}C$ and increment in length be denoted as $\Delta L = L\alpha \Delta T$ where we know,
$\Delta T = {20^0}C$
And total appeared length of rod is given by:
$L + \Delta L = 1$
Put the value of $\Delta L = L\alpha \Delta T$ in above equation with given value of ${\alpha _{iron}} = 1.2 \times {10^{ - 5}}{C^{ - 1}}$
We get,
$L(1 + 1.2 \times {10^{ - 5}} \times 20) = 1$
$\Rightarrow L = \dfrac{1}{{(1 + 1.2 \times {{10}^{ - 5}} \times 20)}}$
$\Rightarrow L = 0.9997\,m$
Hence, the magnitude of length of rod at ${0^0}C$ is $L = 0.9997\,m$
Now, we will find the length of rod at ${100^0}C$
Since we know,
$L' = L(1 + \alpha \Delta T)$ Where,
$\Rightarrow L = 0.9997\,m$
$\Rightarrow \Delta T = 100 - 20 = {80^0}C$
$\Rightarrow {\alpha _{brass}} = 2 \times {10^{ - 5}}{C^{ - 1}}$
Putting the values of above parameters in the equation $L' = L(1 + \alpha \Delta T)$
We get,
$L' = 0.9997(1 + 2 \times {10^{ - 5}} \times 80)$
$\therefore L' = 1.00136\,m$
Hence, the magnitude of length of rod at ${100^0}C$ is $L' = 1.00136\,m$.
Note: It should be remembered that the rod expands linearly so the linear expansion of coefficient is used and the change in temperature is taken from initial temperature and final temperature. In case of expanding the rod the net increment of the length of the rod is directly proportional to the increase in temperature.
Complete step by step answer:
Let $L$ be the length of rod at ${20^0}C$ and increment in length be denoted as $\Delta L = L\alpha \Delta T$ where we know,
$\Delta T = {20^0}C$
And total appeared length of rod is given by:
$L + \Delta L = 1$
Put the value of $\Delta L = L\alpha \Delta T$ in above equation with given value of ${\alpha _{iron}} = 1.2 \times {10^{ - 5}}{C^{ - 1}}$
We get,
$L(1 + 1.2 \times {10^{ - 5}} \times 20) = 1$
$\Rightarrow L = \dfrac{1}{{(1 + 1.2 \times {{10}^{ - 5}} \times 20)}}$
$\Rightarrow L = 0.9997\,m$
Hence, the magnitude of length of rod at ${0^0}C$ is $L = 0.9997\,m$
Now, we will find the length of rod at ${100^0}C$
Since we know,
$L' = L(1 + \alpha \Delta T)$ Where,
$\Rightarrow L = 0.9997\,m$
$\Rightarrow \Delta T = 100 - 20 = {80^0}C$
$\Rightarrow {\alpha _{brass}} = 2 \times {10^{ - 5}}{C^{ - 1}}$
Putting the values of above parameters in the equation $L' = L(1 + \alpha \Delta T)$
We get,
$L' = 0.9997(1 + 2 \times {10^{ - 5}} \times 80)$
$\therefore L' = 1.00136\,m$
Hence, the magnitude of length of rod at ${100^0}C$ is $L' = 1.00136\,m$.
Note: It should be remembered that the rod expands linearly so the linear expansion of coefficient is used and the change in temperature is taken from initial temperature and final temperature. In case of expanding the rod the net increment of the length of the rod is directly proportional to the increase in temperature.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Distinguish between verbal and nonverbal communica class 11 english CBSE

