
An iron pillar consists of a cylindrical portion $2.8m$ high and $20cm$ in diameter and a cone $42cm$ high is surmounted on it. Find the weight of the pillar, given that $1c{m^3}$ of iron weights $7.5gm$.
Answer
619.8k+ views
Hint: Find the volume of the pillar by finding the volumes of cylindrical and conical portions. And then calculate its weight as per the given information.
Given, the height of the cylindrical portion of the pillar, ${h_{cylinder}} = 2.8m = 280cm$.
And the height of the conical portion ${h_{cone}} = 42cm$.
Since, the cone is surmounted on the cylinder, the radius of the base will be the same for cylinder and cone. And diameter is given as $20cm$ in the question. So, radius will be:
$
\Rightarrow r = \dfrac{d}{2} = \dfrac{{20}}{2}, \\
\Rightarrow r = 10cm \\
$
And we know formulae of volume of cylinder and cone, then:
$
\Rightarrow {V_{cylinder}} = \pi {r^2}{h_{cylinder}}, \\
\Rightarrow {V_{cone}} = \dfrac{1}{3}\pi {r^2}{h_{cone}} \\
$
Thus, the total volume of the pillar will be:
\[
\Rightarrow V = {V_{cylinder}} + {V_{cone}}, \\
\Rightarrow V = \pi {r^2}{h_{cylinder}} + \dfrac{1}{3}\pi {r^2}{h_{cone}}, \\
\Rightarrow V = \pi {r^2}\left[ {{h_{cylinder}} + \dfrac{{{h_{cone}}}}{3}} \right] \\
\]
Putting values of respective heights and radius, we’ll get:
$
\Rightarrow V = \dfrac{{22}}{7} \times {\left( {10} \right)^2}\left[ {280 + \dfrac{{42}}{3}} \right], \\
\Rightarrow V = \dfrac{{22}}{7} \times 100 \times 294, \\
\Rightarrow V = 92400 \\
$
Thus the volume of the pillar is $92400c{m^3}$. Now, we have to determine the weight of the pillar. So, according to question:
Weight of $1c{m^3}$of iron $ = 7.5gm$,
$\therefore $Therefore, the weight of $92400c{m^3}$of iron will be:
$
\Rightarrow w = 92400 \times 7.5gm, \\
\Rightarrow w = 693000gm, \\
\Rightarrow w = 693kg. \\
$
Thus, the total weight of the pillar is $693kg$.
Note: If we have to calculate the weight of a solid when its density is given, we always have to calculate the volume of the solid first because weight is directly related to volume and density as:
$
\Rightarrow Density = \dfrac{{weight}}{{Volume}}, \\
\Rightarrow weight = Density \times Volume. \\
$
Given, the height of the cylindrical portion of the pillar, ${h_{cylinder}} = 2.8m = 280cm$.
And the height of the conical portion ${h_{cone}} = 42cm$.
Since, the cone is surmounted on the cylinder, the radius of the base will be the same for cylinder and cone. And diameter is given as $20cm$ in the question. So, radius will be:
$
\Rightarrow r = \dfrac{d}{2} = \dfrac{{20}}{2}, \\
\Rightarrow r = 10cm \\
$
And we know formulae of volume of cylinder and cone, then:
$
\Rightarrow {V_{cylinder}} = \pi {r^2}{h_{cylinder}}, \\
\Rightarrow {V_{cone}} = \dfrac{1}{3}\pi {r^2}{h_{cone}} \\
$
Thus, the total volume of the pillar will be:
\[
\Rightarrow V = {V_{cylinder}} + {V_{cone}}, \\
\Rightarrow V = \pi {r^2}{h_{cylinder}} + \dfrac{1}{3}\pi {r^2}{h_{cone}}, \\
\Rightarrow V = \pi {r^2}\left[ {{h_{cylinder}} + \dfrac{{{h_{cone}}}}{3}} \right] \\
\]
Putting values of respective heights and radius, we’ll get:
$
\Rightarrow V = \dfrac{{22}}{7} \times {\left( {10} \right)^2}\left[ {280 + \dfrac{{42}}{3}} \right], \\
\Rightarrow V = \dfrac{{22}}{7} \times 100 \times 294, \\
\Rightarrow V = 92400 \\
$
Thus the volume of the pillar is $92400c{m^3}$. Now, we have to determine the weight of the pillar. So, according to question:
Weight of $1c{m^3}$of iron $ = 7.5gm$,
$\therefore $Therefore, the weight of $92400c{m^3}$of iron will be:
$
\Rightarrow w = 92400 \times 7.5gm, \\
\Rightarrow w = 693000gm, \\
\Rightarrow w = 693kg. \\
$
Thus, the total weight of the pillar is $693kg$.
Note: If we have to calculate the weight of a solid when its density is given, we always have to calculate the volume of the solid first because weight is directly related to volume and density as:
$
\Rightarrow Density = \dfrac{{weight}}{{Volume}}, \\
\Rightarrow weight = Density \times Volume. \\
$
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Explain zero factorial class 11 maths CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Why is 1 molar aqueous solution more concentrated than class 11 chemistry CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

SiO2GeO2 SnOand PbOare respectively A acidic amphoteric class 11 chemistry CBSE

