
An iron pillar consists of a cylindrical portion $2.8m$ high and $20cm$ in diameter and a cone $42cm$ high is surmounted on it. Find the weight of the pillar, given that $1c{m^3}$ of iron weights $7.5gm$.
Answer
609.6k+ views
Hint: Find the volume of the pillar by finding the volumes of cylindrical and conical portions. And then calculate its weight as per the given information.
Given, the height of the cylindrical portion of the pillar, ${h_{cylinder}} = 2.8m = 280cm$.
And the height of the conical portion ${h_{cone}} = 42cm$.
Since, the cone is surmounted on the cylinder, the radius of the base will be the same for cylinder and cone. And diameter is given as $20cm$ in the question. So, radius will be:
$
\Rightarrow r = \dfrac{d}{2} = \dfrac{{20}}{2}, \\
\Rightarrow r = 10cm \\
$
And we know formulae of volume of cylinder and cone, then:
$
\Rightarrow {V_{cylinder}} = \pi {r^2}{h_{cylinder}}, \\
\Rightarrow {V_{cone}} = \dfrac{1}{3}\pi {r^2}{h_{cone}} \\
$
Thus, the total volume of the pillar will be:
\[
\Rightarrow V = {V_{cylinder}} + {V_{cone}}, \\
\Rightarrow V = \pi {r^2}{h_{cylinder}} + \dfrac{1}{3}\pi {r^2}{h_{cone}}, \\
\Rightarrow V = \pi {r^2}\left[ {{h_{cylinder}} + \dfrac{{{h_{cone}}}}{3}} \right] \\
\]
Putting values of respective heights and radius, we’ll get:
$
\Rightarrow V = \dfrac{{22}}{7} \times {\left( {10} \right)^2}\left[ {280 + \dfrac{{42}}{3}} \right], \\
\Rightarrow V = \dfrac{{22}}{7} \times 100 \times 294, \\
\Rightarrow V = 92400 \\
$
Thus the volume of the pillar is $92400c{m^3}$. Now, we have to determine the weight of the pillar. So, according to question:
Weight of $1c{m^3}$of iron $ = 7.5gm$,
$\therefore $Therefore, the weight of $92400c{m^3}$of iron will be:
$
\Rightarrow w = 92400 \times 7.5gm, \\
\Rightarrow w = 693000gm, \\
\Rightarrow w = 693kg. \\
$
Thus, the total weight of the pillar is $693kg$.
Note: If we have to calculate the weight of a solid when its density is given, we always have to calculate the volume of the solid first because weight is directly related to volume and density as:
$
\Rightarrow Density = \dfrac{{weight}}{{Volume}}, \\
\Rightarrow weight = Density \times Volume. \\
$
Given, the height of the cylindrical portion of the pillar, ${h_{cylinder}} = 2.8m = 280cm$.
And the height of the conical portion ${h_{cone}} = 42cm$.
Since, the cone is surmounted on the cylinder, the radius of the base will be the same for cylinder and cone. And diameter is given as $20cm$ in the question. So, radius will be:
$
\Rightarrow r = \dfrac{d}{2} = \dfrac{{20}}{2}, \\
\Rightarrow r = 10cm \\
$
And we know formulae of volume of cylinder and cone, then:
$
\Rightarrow {V_{cylinder}} = \pi {r^2}{h_{cylinder}}, \\
\Rightarrow {V_{cone}} = \dfrac{1}{3}\pi {r^2}{h_{cone}} \\
$
Thus, the total volume of the pillar will be:
\[
\Rightarrow V = {V_{cylinder}} + {V_{cone}}, \\
\Rightarrow V = \pi {r^2}{h_{cylinder}} + \dfrac{1}{3}\pi {r^2}{h_{cone}}, \\
\Rightarrow V = \pi {r^2}\left[ {{h_{cylinder}} + \dfrac{{{h_{cone}}}}{3}} \right] \\
\]
Putting values of respective heights and radius, we’ll get:
$
\Rightarrow V = \dfrac{{22}}{7} \times {\left( {10} \right)^2}\left[ {280 + \dfrac{{42}}{3}} \right], \\
\Rightarrow V = \dfrac{{22}}{7} \times 100 \times 294, \\
\Rightarrow V = 92400 \\
$
Thus the volume of the pillar is $92400c{m^3}$. Now, we have to determine the weight of the pillar. So, according to question:
Weight of $1c{m^3}$of iron $ = 7.5gm$,
$\therefore $Therefore, the weight of $92400c{m^3}$of iron will be:
$
\Rightarrow w = 92400 \times 7.5gm, \\
\Rightarrow w = 693000gm, \\
\Rightarrow w = 693kg. \\
$
Thus, the total weight of the pillar is $693kg$.
Note: If we have to calculate the weight of a solid when its density is given, we always have to calculate the volume of the solid first because weight is directly related to volume and density as:
$
\Rightarrow Density = \dfrac{{weight}}{{Volume}}, \\
\Rightarrow weight = Density \times Volume. \\
$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

