Answer

Verified

454.2k+ views

Hint- Here, we will proceed by analysing the graph of each function and then drawing a vertical line.

Every function is a relation when each input has only one output. It means that for a particular value of $x$, there should be only one value of $y$ corresponding to that value of $x$.

This can be checked by drawing a vertical line in the graph of the function and if this vertical line cuts at exactly one point on the curve of the function, then that function is a relation whereas if this vertical line cuts at more than one point on the curve of the function, then this function is not a relation.

Now, figures corresponding to each function given in the options are drawn and then a vertical line is also drawn in each figure. Clearly, in all the figures the vertical line is cutting at exactly one point. Thereby, showing that for one input value there is only one output value.

Hence, all the three given functions i.e., $y = x$, $y = x - 1$ and $y = {x^2}$are examples of relations.

Therefore, options A, B and C are correct.

Note- For function $y = {x^2}$, at $x = 1$ and $x = - 1$ the value of the function is the same which is $y = 1$. Here, corresponding to two inputs there is one same value of output which is possible for a relation because corresponding to each value of input there is only one output.

Every function is a relation when each input has only one output. It means that for a particular value of $x$, there should be only one value of $y$ corresponding to that value of $x$.

This can be checked by drawing a vertical line in the graph of the function and if this vertical line cuts at exactly one point on the curve of the function, then that function is a relation whereas if this vertical line cuts at more than one point on the curve of the function, then this function is not a relation.

Now, figures corresponding to each function given in the options are drawn and then a vertical line is also drawn in each figure. Clearly, in all the figures the vertical line is cutting at exactly one point. Thereby, showing that for one input value there is only one output value.

Hence, all the three given functions i.e., $y = x$, $y = x - 1$ and $y = {x^2}$are examples of relations.

Therefore, options A, B and C are correct.

Note- For function $y = {x^2}$, at $x = 1$ and $x = - 1$ the value of the function is the same which is $y = 1$. Here, corresponding to two inputs there is one same value of output which is possible for a relation because corresponding to each value of input there is only one output.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Guru Purnima speech in English in 100 words class 7 english CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Select the word that is correctly spelled a Twelveth class 10 english CBSE