An electric lamp is marked \[60{\text{ W}}\], \[{\text{240 V}}\]. What is the current passing through it when connected to \[{\text{220 V}}\] power supply? How many joules does it consume in\[1{\text{ }}hr\]?
Answer
Verified
405.6k+ views
Hint: The current passing through the electric lamp can be calculated by applying Ohm’s law to it which states that the current passing through the lamp is directly proportional to the voltage applied across it. When an electric lamp is marked as \[60{\text{ W}}\], \[{\text{240 V}}\], it means that the consumes \[60{\text{ J}}\] of energy per unit time when connected to a \[{\text{240 V}}\] power supply.
Formula used:
The power of the electric lamp is associated with the voltage applied to it as
\[P = \dfrac{{{V^2}}}{R}\] …… (1)
Here, \[P\] is the power of the lamp, \[V\] is the voltage applied, and \[R\] is the resistance of the electric bulb.
And, the Ohm's Law is given by
\[V = IR\] …… (2), where \[I\] is the current passing through the circuit.
Complete step by step answer:
In the question, it is given that the power of the electric lamp is \[60{\text{ W}}\] and the marked voltage is \[{\text{240 V}}\]
Substitute \[60{\text{ W}}\] for \[P\], and \[{\text{240 V}}\] for \[V\] in equation (1) as
\[60 = \dfrac{{{{240}^2}}}{R}\]
\[ \Rightarrow R = \dfrac{{240 \times 240}}{{60}}\]
\[ \Rightarrow R = 960{\text{ }}\Omega \]
Substitute \[960{\text{ }}\Omega \] for \[R\], and \[{\text{220 V}}\] for \[V\] in equation (2) as
\[220 = I\left( {960} \right)\]
\[ \Rightarrow I = \dfrac{{220}}{{960}}\]
\[ \Rightarrow I = 0.23{\text{ A}}\]
Therefore, the current passing through the electric lamp is \[0.23{\text{ A}}\].
Now, substitute \[{\text{220 V}}\]for \[V\], and \[960{\text{ }}\Omega \] for \[R\] in equation (1) as
\[P = \dfrac{{{{220}^2}}}{{960}}\]
\[ \Rightarrow P = \dfrac{{48400}}{{960}}\]
\[ \Rightarrow P = 50.42{\text{W}}\]
Also, the power is given defined by work done per unit time and is expressed as
\[P = \dfrac{W}{t}\] …… (3)
Here, \[W\] is the work done and \[t\] is the time.
Substitute \[50.42{\text{ W}}\] for \[P\] and \[1{\text{ hr}}\] for \[t\] in equation (3) as
\[50.42{\text{ W}} = \dfrac{W}{{1{\text{ hr}}}}\]
\[ \Rightarrow W = 50.42{\text{ W}} \times 1{\text{ hr}}\]
\[ \Rightarrow W = 50.42{\text{ W}} \times 3600{\text{ s}}\]
\[ \Rightarrow {\text{W = 181512 J}}\]
Therefore, the electric lamp consumes \[{\text{181512 J}}\] in \[1{\text{ hr}}\].
Note: Power defines the amount of energy that is converted or transferred in an electric circuit per unit of time. It's S.I. The unit is Watt, \[{\text{W}}\], which is equal to one joule of energy consumed in one second.
Formula used:
The power of the electric lamp is associated with the voltage applied to it as
\[P = \dfrac{{{V^2}}}{R}\] …… (1)
Here, \[P\] is the power of the lamp, \[V\] is the voltage applied, and \[R\] is the resistance of the electric bulb.
And, the Ohm's Law is given by
\[V = IR\] …… (2), where \[I\] is the current passing through the circuit.
Complete step by step answer:
In the question, it is given that the power of the electric lamp is \[60{\text{ W}}\] and the marked voltage is \[{\text{240 V}}\]
Substitute \[60{\text{ W}}\] for \[P\], and \[{\text{240 V}}\] for \[V\] in equation (1) as
\[60 = \dfrac{{{{240}^2}}}{R}\]
\[ \Rightarrow R = \dfrac{{240 \times 240}}{{60}}\]
\[ \Rightarrow R = 960{\text{ }}\Omega \]
Substitute \[960{\text{ }}\Omega \] for \[R\], and \[{\text{220 V}}\] for \[V\] in equation (2) as
\[220 = I\left( {960} \right)\]
\[ \Rightarrow I = \dfrac{{220}}{{960}}\]
\[ \Rightarrow I = 0.23{\text{ A}}\]
Therefore, the current passing through the electric lamp is \[0.23{\text{ A}}\].
Now, substitute \[{\text{220 V}}\]for \[V\], and \[960{\text{ }}\Omega \] for \[R\] in equation (1) as
\[P = \dfrac{{{{220}^2}}}{{960}}\]
\[ \Rightarrow P = \dfrac{{48400}}{{960}}\]
\[ \Rightarrow P = 50.42{\text{W}}\]
Also, the power is given defined by work done per unit time and is expressed as
\[P = \dfrac{W}{t}\] …… (3)
Here, \[W\] is the work done and \[t\] is the time.
Substitute \[50.42{\text{ W}}\] for \[P\] and \[1{\text{ hr}}\] for \[t\] in equation (3) as
\[50.42{\text{ W}} = \dfrac{W}{{1{\text{ hr}}}}\]
\[ \Rightarrow W = 50.42{\text{ W}} \times 1{\text{ hr}}\]
\[ \Rightarrow W = 50.42{\text{ W}} \times 3600{\text{ s}}\]
\[ \Rightarrow {\text{W = 181512 J}}\]
Therefore, the electric lamp consumes \[{\text{181512 J}}\] in \[1{\text{ hr}}\].
Note: Power defines the amount of energy that is converted or transferred in an electric circuit per unit of time. It's S.I. The unit is Watt, \[{\text{W}}\], which is equal to one joule of energy consumed in one second.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
State the laws of reflection of light