
$\alpha ,\beta $ are complex cube roots of unity and $x=a+b$, $y=a\alpha +b\beta $, $z=a\beta +b\alpha $ then ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}$=
A. $0$
B. $3ab$
C. $3({{a}^{3}}-{{b}^{3}})$
D. $3{{(a-b)}^{3}}$
Answer
602.7k+ views
Hint: Assume $\alpha =\omega ,\beta ={{\omega }^{2}}$. Substitute the values in $x.y$and $z$. Then add $x+y+z$ and simplify. Then use the formula ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(x+y+z)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$. Then substitute the value of $x+y+z$ in the formula. You will get the answer. Try it.
Complete step-by-step answer:
$x=a+b$
$y=a\omega +b{{\omega }^{2}}$
$z=a{{\omega }^{2}}+b\omega $
So \[x+y+z=a+b+a\omega +b{{\omega }^{2}}+a{{\omega }^{2}}+b\omega \]
\[x+y+z=a(1+\omega +{{\omega }^{2}})+b(1+\omega +{{\omega }^{2}})\]
We know \[1+\omega +{{\omega }^{2}}=0\].
\[x+y+z=0\]
We know the formula ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(x+y+z)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$.
So here\[x+y+z=0\].
So ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(0)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$
${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3xyz$
So we know the value of$x,y$ and $z$.
So substituting the values we get,
${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3(a+b)(a\omega +b{{\omega }^{2}})(a{{\omega }^{2}}+b\omega )$
Simplifying we get,
\[\begin{align}
& {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3(a+b)({{a}^{2}}{{\omega }^{3}}+ab{{\omega }^{3}}+ab{{\omega }^{4}}+{{b}^{2}}{{\omega }^{3}}) \\
& {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3({{a}^{3}}+{{b}^{3}}) \\
\end{align}\]
\[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3({{a}^{3}}+{{b}^{3}})\]
So we get the value of \[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3({{a}^{3}}+{{b}^{3}})\].
Note: Read the question carefully. Also, while simplifying, don't make any mistake. Take utmost care of the sign. Do not jumble while simplifying. Solve it step by step. You must know the formula ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(x+y+z)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$.
Complete step-by-step answer:
$x=a+b$
$y=a\omega +b{{\omega }^{2}}$
$z=a{{\omega }^{2}}+b\omega $
So \[x+y+z=a+b+a\omega +b{{\omega }^{2}}+a{{\omega }^{2}}+b\omega \]
\[x+y+z=a(1+\omega +{{\omega }^{2}})+b(1+\omega +{{\omega }^{2}})\]
We know \[1+\omega +{{\omega }^{2}}=0\].
\[x+y+z=0\]
We know the formula ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(x+y+z)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$.
So here\[x+y+z=0\].
So ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(0)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$
${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3xyz$
So we know the value of$x,y$ and $z$.
So substituting the values we get,
${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3(a+b)(a\omega +b{{\omega }^{2}})(a{{\omega }^{2}}+b\omega )$
Simplifying we get,
\[\begin{align}
& {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3(a+b)({{a}^{2}}{{\omega }^{3}}+ab{{\omega }^{3}}+ab{{\omega }^{4}}+{{b}^{2}}{{\omega }^{3}}) \\
& {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3({{a}^{3}}+{{b}^{3}}) \\
\end{align}\]
\[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3({{a}^{3}}+{{b}^{3}})\]
So we get the value of \[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3({{a}^{3}}+{{b}^{3}})\].
Note: Read the question carefully. Also, while simplifying, don't make any mistake. Take utmost care of the sign. Do not jumble while simplifying. Solve it step by step. You must know the formula ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(x+y+z)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

