
$\alpha ,\beta $ are complex cube roots of unity and $x=a+b$, $y=a\alpha +b\beta $, $z=a\beta +b\alpha $ then ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}$=
A. $0$
B. $3ab$
C. $3({{a}^{3}}-{{b}^{3}})$
D. $3{{(a-b)}^{3}}$
Answer
621.3k+ views
Hint: Assume $\alpha =\omega ,\beta ={{\omega }^{2}}$. Substitute the values in $x.y$and $z$. Then add $x+y+z$ and simplify. Then use the formula ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(x+y+z)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$. Then substitute the value of $x+y+z$ in the formula. You will get the answer. Try it.
Complete step-by-step answer:
$x=a+b$
$y=a\omega +b{{\omega }^{2}}$
$z=a{{\omega }^{2}}+b\omega $
So \[x+y+z=a+b+a\omega +b{{\omega }^{2}}+a{{\omega }^{2}}+b\omega \]
\[x+y+z=a(1+\omega +{{\omega }^{2}})+b(1+\omega +{{\omega }^{2}})\]
We know \[1+\omega +{{\omega }^{2}}=0\].
\[x+y+z=0\]
We know the formula ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(x+y+z)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$.
So here\[x+y+z=0\].
So ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(0)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$
${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3xyz$
So we know the value of$x,y$ and $z$.
So substituting the values we get,
${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3(a+b)(a\omega +b{{\omega }^{2}})(a{{\omega }^{2}}+b\omega )$
Simplifying we get,
\[\begin{align}
& {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3(a+b)({{a}^{2}}{{\omega }^{3}}+ab{{\omega }^{3}}+ab{{\omega }^{4}}+{{b}^{2}}{{\omega }^{3}}) \\
& {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3({{a}^{3}}+{{b}^{3}}) \\
\end{align}\]
\[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3({{a}^{3}}+{{b}^{3}})\]
So we get the value of \[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3({{a}^{3}}+{{b}^{3}})\].
Note: Read the question carefully. Also, while simplifying, don't make any mistake. Take utmost care of the sign. Do not jumble while simplifying. Solve it step by step. You must know the formula ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(x+y+z)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$.
Complete step-by-step answer:
$x=a+b$
$y=a\omega +b{{\omega }^{2}}$
$z=a{{\omega }^{2}}+b\omega $
So \[x+y+z=a+b+a\omega +b{{\omega }^{2}}+a{{\omega }^{2}}+b\omega \]
\[x+y+z=a(1+\omega +{{\omega }^{2}})+b(1+\omega +{{\omega }^{2}})\]
We know \[1+\omega +{{\omega }^{2}}=0\].
\[x+y+z=0\]
We know the formula ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(x+y+z)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$.
So here\[x+y+z=0\].
So ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(0)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$
${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3xyz$
So we know the value of$x,y$ and $z$.
So substituting the values we get,
${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3(a+b)(a\omega +b{{\omega }^{2}})(a{{\omega }^{2}}+b\omega )$
Simplifying we get,
\[\begin{align}
& {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3(a+b)({{a}^{2}}{{\omega }^{3}}+ab{{\omega }^{3}}+ab{{\omega }^{4}}+{{b}^{2}}{{\omega }^{3}}) \\
& {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3({{a}^{3}}+{{b}^{3}}) \\
\end{align}\]
\[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3({{a}^{3}}+{{b}^{3}})\]
So we get the value of \[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3({{a}^{3}}+{{b}^{3}})\].
Note: Read the question carefully. Also, while simplifying, don't make any mistake. Take utmost care of the sign. Do not jumble while simplifying. Solve it step by step. You must know the formula ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(x+y+z)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

