# $\alpha ,\beta $ are complex cube roots of unity and $x=a+b$, $y=a\alpha +b\beta $, $z=a\beta +b\alpha $ then ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}$=

A. $0$

B. $3ab$

C. $3({{a}^{3}}-{{b}^{3}})$

D. $3{{(a-b)}^{3}}$

Last updated date: 20th Mar 2023

•

Total views: 306k

•

Views today: 3.85k

Answer

Verified

306k+ views

Hint: Assume $\alpha =\omega ,\beta ={{\omega }^{2}}$. Substitute the values in $x.y$and $z$. Then add $x+y+z$ and simplify. Then use the formula ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(x+y+z)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$. Then substitute the value of $x+y+z$ in the formula. You will get the answer. Try it.

Complete step-by-step answer:

$x=a+b$

$y=a\omega +b{{\omega }^{2}}$

$z=a{{\omega }^{2}}+b\omega $

So \[x+y+z=a+b+a\omega +b{{\omega }^{2}}+a{{\omega }^{2}}+b\omega \]

\[x+y+z=a(1+\omega +{{\omega }^{2}})+b(1+\omega +{{\omega }^{2}})\]

We know \[1+\omega +{{\omega }^{2}}=0\].

\[x+y+z=0\]

We know the formula ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(x+y+z)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$.

So here\[x+y+z=0\].

So ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(0)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$

${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3xyz$

So we know the value of$x,y$ and $z$.

So substituting the values we get,

${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3(a+b)(a\omega +b{{\omega }^{2}})(a{{\omega }^{2}}+b\omega )$

Simplifying we get,

\[\begin{align}

& {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3(a+b)({{a}^{2}}{{\omega }^{3}}+ab{{\omega }^{3}}+ab{{\omega }^{4}}+{{b}^{2}}{{\omega }^{3}}) \\

& {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3({{a}^{3}}+{{b}^{3}}) \\

\end{align}\]

\[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3({{a}^{3}}+{{b}^{3}})\]

So we get the value of \[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3({{a}^{3}}+{{b}^{3}})\].

Note: Read the question carefully. Also, while simplifying, don't make any mistake. Take utmost care of the sign. Do not jumble while simplifying. Solve it step by step. You must know the formula ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(x+y+z)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$.

Complete step-by-step answer:

$x=a+b$

$y=a\omega +b{{\omega }^{2}}$

$z=a{{\omega }^{2}}+b\omega $

So \[x+y+z=a+b+a\omega +b{{\omega }^{2}}+a{{\omega }^{2}}+b\omega \]

\[x+y+z=a(1+\omega +{{\omega }^{2}})+b(1+\omega +{{\omega }^{2}})\]

We know \[1+\omega +{{\omega }^{2}}=0\].

\[x+y+z=0\]

We know the formula ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(x+y+z)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$.

So here\[x+y+z=0\].

So ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(0)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$

${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3xyz$

So we know the value of$x,y$ and $z$.

So substituting the values we get,

${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3(a+b)(a\omega +b{{\omega }^{2}})(a{{\omega }^{2}}+b\omega )$

Simplifying we get,

\[\begin{align}

& {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3(a+b)({{a}^{2}}{{\omega }^{3}}+ab{{\omega }^{3}}+ab{{\omega }^{4}}+{{b}^{2}}{{\omega }^{3}}) \\

& {{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3({{a}^{3}}+{{b}^{3}}) \\

\end{align}\]

\[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3({{a}^{3}}+{{b}^{3}})\]

So we get the value of \[{{x}^{3}}+{{y}^{3}}+{{z}^{3}}=3({{a}^{3}}+{{b}^{3}})\].

Note: Read the question carefully. Also, while simplifying, don't make any mistake. Take utmost care of the sign. Do not jumble while simplifying. Solve it step by step. You must know the formula ${{x}^{3}}+{{y}^{3}}+{{z}^{3}}=(x+y+z)({{x}^{2}}+{{y}^{2}}+{{z}^{2}}-xy-yz-zx)+3xyz$.

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE