
After absorbing a slowly moving neutron of mass ${{m}_{n}}$ (momentum =0), a nucleus of mass M breaks into two nuclei of masses ${{m}_{1}}$ and $5{{m}_{1}}$, ($6{{m}_{1}}=M+{{m}_{N}}$) respectively. If the de-Broglie wavelength of the nucleus with mass ${{m}_{1}}$ is λ then de-Broglie wavelength of the other nucleus will be
(a) 25λ
(b) 5λ
(c) λ/5
(d) λ
Answer
543.9k+ views
Hint: Initially the neutron absorbed has zero momentum, since the mass of the neutron is approximately equal to the mass of the proton, so its mass cannot be zero and hence its velocity is zero. Also, the nucleus of mass M breaks into two nuclei and this happens due to the internal forces. We can use the concept of De Broglie wavelength relationship to arrive at a meaningful solution.
Complete step by step answer:
From the De Broglie wavelength relationship $\lambda =\dfrac{h}{mv}$where m is the mass of the moving body and h is Planck’s constant. Also, momentum of a body of mass, m moving with a velocity, v is given by $p=mv$.
$\Rightarrow \lambda =\dfrac{h}{mv}=\dfrac{h}{p}$--(1)
Also, the breakup takes place due to internal forces and so momentum must remain conserved.
$\Rightarrow {{p}_{1}}+{{p}_{2}}=0$
$\Rightarrow {{p}_{1}}={{p}_{2}}$
Using equation (1), we get,
$\Rightarrow \dfrac{h}{{{p}_{1}}}=\dfrac{h}{{{p}_{2}}}$
$\therefore {{\lambda }_{1}}={{\lambda }_{2}}=\lambda $
So, the correct option is D.
Note:The wavelength is dependent upon the frequency and the speed of the propagating wave. Frequency is the characteristic of the source which is producing the wave. The SI unit of the wavelength is metre and velocity of the wave is m/s while for the frequency it is to be taken in Hertz (hz) always. Also, the law of conservation of momentum has its roots in law of conservation of energy.
Complete step by step answer:
From the De Broglie wavelength relationship $\lambda =\dfrac{h}{mv}$where m is the mass of the moving body and h is Planck’s constant. Also, momentum of a body of mass, m moving with a velocity, v is given by $p=mv$.
$\Rightarrow \lambda =\dfrac{h}{mv}=\dfrac{h}{p}$--(1)
Also, the breakup takes place due to internal forces and so momentum must remain conserved.
$\Rightarrow {{p}_{1}}+{{p}_{2}}=0$
$\Rightarrow {{p}_{1}}={{p}_{2}}$
Using equation (1), we get,
$\Rightarrow \dfrac{h}{{{p}_{1}}}=\dfrac{h}{{{p}_{2}}}$
$\therefore {{\lambda }_{1}}={{\lambda }_{2}}=\lambda $
So, the correct option is D.
Note:The wavelength is dependent upon the frequency and the speed of the propagating wave. Frequency is the characteristic of the source which is producing the wave. The SI unit of the wavelength is metre and velocity of the wave is m/s while for the frequency it is to be taken in Hertz (hz) always. Also, the law of conservation of momentum has its roots in law of conservation of energy.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

