
According to Arrhenius equation, the rate constant (k) is related to temperature (T) as:
A. $\ln \left( \frac{{{k}_{2}}}{{{k}_{1}}} \right)=\frac{{{E}_{a}}}{R}\left[ \frac{1}{{{T}_{1}}}-\frac{1}{{{T}_{2}}} \right]$
B. $\ln \left( \frac{{{k}_{2}}}{{{k}_{1}}} \right)=\frac{-{{E}_{a}}}{R}\left[ \frac{1}{{{T}_{1}}}-\frac{1}{{{T}_{2}}} \right]$
C. $\ln \left( \frac{{{k}_{2}}}{{{k}_{1}}} \right)=\frac{{{E}_{a}}}{R}\left[ \frac{1}{{{T}_{1}}}+\frac{1}{{{T}_{2}}} \right]$
D. $\ln \left( \frac{{{k}_{2}}}{{{k}_{1}}} \right)=\frac{-{{E}_{a}}}{R}\left[ \frac{1}{{{T}_{1}}}+\frac{1}{{{T}_{2}}} \right]$
Answer
581.4k+ views
Hint: Arrhenius equation is basically a formula which describes the temperature dependence of the reaction rates. The formula of Arrhenius equation is \[k=A{{e}^{-Ea/RT}}\]
Complete step by step answer:
- We can see that Arrhenius equation is:
\[k=A{{e}^{-Ea/RT}}\]
- Where, k is the rate constant
${{E}_{a}}$ is the activation energy
T is the temperature
R is the universal gas constant
A is the pre-exponential factor which represents the frequency of collisions that takes place in between reactants at a particular concentration.
- Here, we are considering two temperatures, so as we know that the value of rate constant depends on temperature. As we vary the temperature, the value of rate constant will also vary.
-So, we can write the equation for two different temperatures as:
For temperature ${{T}_{1}}$, \[{{k}_{1}}=A{{e}^{-Ea/R{{T}_{1}}}}\]
For temperature ${{T}_{2}}$, \[{{k}_{2}}=A{{e}^{-Ea/R{{T}_{2}}}}\]
By taking log on both equations we get:
$\ln \left( \frac{{{k}_{2}}}{{{k}_{1}}} \right)=\frac{{{E}_{a}}}{R}\left[ \frac{1}{{{T}_{1}}}+\frac{1}{{{T}_{2}}} \right]$\[\log {{k}_{1}}=\log A-\frac{{{E}_{a}}}{R{{T}_{1}}}\]
\[\log {{k}_{2}}=\log A-\frac{{{E}_{a}}}{R{{T}_{2}}}\]
Now, by subtracting both the equations we get:
\[\log \frac{{{k}_{1}}}{{{k}_{2}}}=\frac{-{{E}_{a}}}{R}\left[ \frac{1}{{{T}_{1}}}-\frac{1}{{{T}_{2}}} \right]\]
- We can write this equation as:
\[\log \frac{{{k}_{2}}}{{{k}_{1}}}=\frac{{{E}_{a}}}{R}\left[ \frac{1}{{{T}_{1}}}-\frac{1}{{{T}_{2}}} \right]\]
- Hence, we can conclude that the correct option is (), that is according to Arrhenius equation, the rate constant (k) is related to temperature (T) as: $\ln \left( \frac{{{k}_{2}}}{{{k}_{1}}} \right)=\frac{{{E}_{a}}}{R}\left[ \frac{1}{{{T}_{1}}}-\frac{1}{{{T}_{2}}} \right]$
Note: It is found that the unit of rate constant in Arrhenius equation is: ${{\sec }^{-1}}$. As the value of activation energy increases, the rate constant k decreases. And as the temperature increases the value of rate constant increases. The rates of uncatalysed reactions are more affected by temperature than those of the rates of the catalysed reactions.
Complete step by step answer:
- We can see that Arrhenius equation is:
\[k=A{{e}^{-Ea/RT}}\]
- Where, k is the rate constant
${{E}_{a}}$ is the activation energy
T is the temperature
R is the universal gas constant
A is the pre-exponential factor which represents the frequency of collisions that takes place in between reactants at a particular concentration.
- Here, we are considering two temperatures, so as we know that the value of rate constant depends on temperature. As we vary the temperature, the value of rate constant will also vary.
-So, we can write the equation for two different temperatures as:
For temperature ${{T}_{1}}$, \[{{k}_{1}}=A{{e}^{-Ea/R{{T}_{1}}}}\]
For temperature ${{T}_{2}}$, \[{{k}_{2}}=A{{e}^{-Ea/R{{T}_{2}}}}\]
By taking log on both equations we get:
$\ln \left( \frac{{{k}_{2}}}{{{k}_{1}}} \right)=\frac{{{E}_{a}}}{R}\left[ \frac{1}{{{T}_{1}}}+\frac{1}{{{T}_{2}}} \right]$\[\log {{k}_{1}}=\log A-\frac{{{E}_{a}}}{R{{T}_{1}}}\]
\[\log {{k}_{2}}=\log A-\frac{{{E}_{a}}}{R{{T}_{2}}}\]
Now, by subtracting both the equations we get:
\[\log \frac{{{k}_{1}}}{{{k}_{2}}}=\frac{-{{E}_{a}}}{R}\left[ \frac{1}{{{T}_{1}}}-\frac{1}{{{T}_{2}}} \right]\]
- We can write this equation as:
\[\log \frac{{{k}_{2}}}{{{k}_{1}}}=\frac{{{E}_{a}}}{R}\left[ \frac{1}{{{T}_{1}}}-\frac{1}{{{T}_{2}}} \right]\]
- Hence, we can conclude that the correct option is (), that is according to Arrhenius equation, the rate constant (k) is related to temperature (T) as: $\ln \left( \frac{{{k}_{2}}}{{{k}_{1}}} \right)=\frac{{{E}_{a}}}{R}\left[ \frac{1}{{{T}_{1}}}-\frac{1}{{{T}_{2}}} \right]$
Note: It is found that the unit of rate constant in Arrhenius equation is: ${{\sec }^{-1}}$. As the value of activation energy increases, the rate constant k decreases. And as the temperature increases the value of rate constant increases. The rates of uncatalysed reactions are more affected by temperature than those of the rates of the catalysed reactions.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

State the principle of an ac generator and explain class 12 physics CBSE

