Answer
Verified
483.9k+ views
Hint: Use the property of parallelogram that opposite angles of a parallelogram are equal. Then use the property that the sum of all angles of a quadrilateral is \[360{}^\circ \] . For the second part, use cosine of angle A found from the first part to find perpendicular distance. For the third part, use the formula for Area of parallelogram = Length of base \[\times \] Height .
Complete step-by-step answer:
We are given that ABCD is a parallelogram with AB=8cm, AD=4cm, \[\angle B=120{}^\circ \]
We need to find the following
(a) $\angle $A
(b) the perpendicular distance from D to AB
(c) the area of ABCD
Let us first solve (a).
We know that the opposite angles of a parallelogram are equal.
Using this, \[\angle B=\angle D=120{}^\circ \]
And, \[\angle A=\angle C\]
Also, we know that the sum of all angles of a quadrilateral is \[360{}^\circ \] .
\[\angle A+\angle B+\angle C+\angle D=360{}^\circ \]
Substituting the relations between the angles in this equation, we will get the following:
\[2\angle A+2\angle B=360{}^\circ \]
\[2\angle A+2\times 120{}^\circ =360{}^\circ \]
\[2\angle A+240{}^\circ =360{}^\circ \]
\[2\angle A=120{}^\circ \]
So, \[\angle A=60{}^\circ \]
Now, let us solve (b)
For this, draw DE as perpendicular from D to AB as shown in the figure.
We need to find the length of DE.
Now, we found in the previous part that \[\angle A=60{}^\circ \]
We also know that \[\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}\]
So, \[\sin \angle A=\dfrac{DE}{AD}=\dfrac{\sqrt{3}}{2}\]
\[\sin \angle A=\dfrac{DE}{4}=\dfrac{\sqrt{3}}{2}\]
This gives us: \[DE=2\sqrt{3}\] cm
So, the perpendicular distance from D to AB is \[2\sqrt{3}\] cm.
Now, we will solve (c).
We need to find the area of ABCD.
We know that:
Area of parallelogram = Length of base \[\times \] Height
Here, we have length of base, AB = 8 cm
Height, DE = \[2\sqrt{3}\] cm
Putting these values in the formula, we will get the following:
Area of ABCD = Length of AB \[\times \] Length of DE
Area of ABCD = \[8\times 2\sqrt{3}\] \[=16\sqrt{3}c{{m}^{2}}\]
So, Area of ABCD is \[16\sqrt{3}c{{m}^{2}}\]
Note: You have to remember the various geometrical properties to solve this kind of question. For example, in this question too, you need to use the properties like opposite angles of a parallelogram are equal and that the sum of all angles of a quadrilateral is \[360{}^\circ \]
Complete step-by-step answer:
We are given that ABCD is a parallelogram with AB=8cm, AD=4cm, \[\angle B=120{}^\circ \]
We need to find the following
(a) $\angle $A
(b) the perpendicular distance from D to AB
(c) the area of ABCD
Let us first solve (a).
We know that the opposite angles of a parallelogram are equal.
Using this, \[\angle B=\angle D=120{}^\circ \]
And, \[\angle A=\angle C\]
Also, we know that the sum of all angles of a quadrilateral is \[360{}^\circ \] .
\[\angle A+\angle B+\angle C+\angle D=360{}^\circ \]
Substituting the relations between the angles in this equation, we will get the following:
\[2\angle A+2\angle B=360{}^\circ \]
\[2\angle A+2\times 120{}^\circ =360{}^\circ \]
\[2\angle A+240{}^\circ =360{}^\circ \]
\[2\angle A=120{}^\circ \]
So, \[\angle A=60{}^\circ \]
Now, let us solve (b)
For this, draw DE as perpendicular from D to AB as shown in the figure.
We need to find the length of DE.
Now, we found in the previous part that \[\angle A=60{}^\circ \]
We also know that \[\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}\]
So, \[\sin \angle A=\dfrac{DE}{AD}=\dfrac{\sqrt{3}}{2}\]
\[\sin \angle A=\dfrac{DE}{4}=\dfrac{\sqrt{3}}{2}\]
This gives us: \[DE=2\sqrt{3}\] cm
So, the perpendicular distance from D to AB is \[2\sqrt{3}\] cm.
Now, we will solve (c).
We need to find the area of ABCD.
We know that:
Area of parallelogram = Length of base \[\times \] Height
Here, we have length of base, AB = 8 cm
Height, DE = \[2\sqrt{3}\] cm
Putting these values in the formula, we will get the following:
Area of ABCD = Length of AB \[\times \] Length of DE
Area of ABCD = \[8\times 2\sqrt{3}\] \[=16\sqrt{3}c{{m}^{2}}\]
So, Area of ABCD is \[16\sqrt{3}c{{m}^{2}}\]
Note: You have to remember the various geometrical properties to solve this kind of question. For example, in this question too, you need to use the properties like opposite angles of a parallelogram are equal and that the sum of all angles of a quadrilateral is \[360{}^\circ \]
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE