Answer
Verified
393k+ views
Hint: As we know that above question is related to GP series or Geometric progression series. It is a sequence of non zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. We know the GP formula for $ {n^{th}} $ term i.e. $ {a_n} = a{r^{n - 1}} $ .
Complete step-by-step answer:
In the given question we have been given $ {a_1} = 2 $ , $ r = - 3 $ . We have to find $ {a_4} $ .
We know that the general form of the Geometric series is
$ {a_1} + {a_2}r + {a_3}{r^2} + ...a{r^n} $ , where $ {a_1} $ is the first term, $ {a_2} $ is the second term and so on… and $ r $ is the common ratio.
So in the given series we have $ {a_1} = 2 $ and common ratio $ r = - 3 $ . And our $ nth $ term i.e. $ n = 4 $ .
Now by applying the formula we can write $ {a_4} = 2 \times {( - 3)^{4 - 1}} $ .
On solving we have $ 2 \times - {3^3} = 2 \times ( - 27) $ . It gives us the value $ - 54 $ .
Hence the correct option is (c) $ - 54 $ .
So, the correct answer is “Option C”.
Note: We should note that if the geometric series is finite then we take the formulas for finding the sum as $ {S_n} = \dfrac{{a({r^n} - 1)}}{{r - 1}};\,r > 1 $ and if $ r < 1 $ , then the formula is $ {S_n} = \dfrac{{a(1 - {r^n})}}{{1 - r}} $ . Before solving such questions we should be well aware of the geometric progressions and their formulas. We should do the calculations very carefully especially while finding the sums of terms using the formula. It should be noted that the sum of n terms of arithmetic progression is given by $ \dfrac{1}{2}\left( {2a + (n - 1)d} \right) $ .
Complete step-by-step answer:
In the given question we have been given $ {a_1} = 2 $ , $ r = - 3 $ . We have to find $ {a_4} $ .
We know that the general form of the Geometric series is
$ {a_1} + {a_2}r + {a_3}{r^2} + ...a{r^n} $ , where $ {a_1} $ is the first term, $ {a_2} $ is the second term and so on… and $ r $ is the common ratio.
So in the given series we have $ {a_1} = 2 $ and common ratio $ r = - 3 $ . And our $ nth $ term i.e. $ n = 4 $ .
Now by applying the formula we can write $ {a_4} = 2 \times {( - 3)^{4 - 1}} $ .
On solving we have $ 2 \times - {3^3} = 2 \times ( - 27) $ . It gives us the value $ - 54 $ .
Hence the correct option is (c) $ - 54 $ .
So, the correct answer is “Option C”.
Note: We should note that if the geometric series is finite then we take the formulas for finding the sum as $ {S_n} = \dfrac{{a({r^n} - 1)}}{{r - 1}};\,r > 1 $ and if $ r < 1 $ , then the formula is $ {S_n} = \dfrac{{a(1 - {r^n})}}{{1 - r}} $ . Before solving such questions we should be well aware of the geometric progressions and their formulas. We should do the calculations very carefully especially while finding the sums of terms using the formula. It should be noted that the sum of n terms of arithmetic progression is given by $ \dfrac{1}{2}\left( {2a + (n - 1)d} \right) $ .
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE