
A uniform electric field $'E'$ exist between two parallel plates having opposite charge on each plate. An electron enters the field between the plates with speed ${v_0}$ as shown in the figure. If length of each plates is$1$ then angle with which electrons deviates from its initial path is (m is the mass of electrons)
Answer
503.4k+ views
Hint: The presence of an electric charge causes an alteration in space known as the electric field. The electric force between a source charge and a test charge is mediated by the electric field. The field is a vector, so it points away from positive charges and toward negative charges by definition.
Complete step-by-step solution:
A continuous charge delivery system is one in which the charge is distributed evenly through the conductor. In a continuous charge device, an infinite number of charges are packed tightly together with just a small gap between them.
Now, coming to the given question;
Uniform Electric field = $E$
Speed of electron entering = ${v_0}$
Length of each plate =$l$
Mass of electron =$m$
The acceleration of electron is = $\dfrac{{eE}}{m}$
The horizontal velocity remains ${v_0}$ as there is no acceleration in this direction.
Thus, the time taken in crossing field $t = \dfrac{l}{{{v_0}}}$
The upward component of velocity of electron as it emerges from the field region is
$ \Rightarrow {V_y} = \alpha t = \dfrac{{eEl}}{{m{v_0}}}$
The horizontal component of velocity remains,
${v_y} = {v_0}$
The angle =$0$, made by the resultant velocity with the original direction is given by,
$\tan \theta = \dfrac{{{v_y}}}{{{v_x}}} = \dfrac{{eEl}}{{m{v_0}x{v_0}}}$
Thus, the electron deviates by an angle $\theta = {\tan ^{ - 1}}\left( {\dfrac{{eEl}}{{m{v_0}^2}}} \right)$
Note:Positive or negative charges pass through the electric field lines. Surface applications such as wound healing, corneal repair, and even brain and spinal stimulation with closely spaced, implanted electrodes are well suited for such sources.
Complete step-by-step solution:
A continuous charge delivery system is one in which the charge is distributed evenly through the conductor. In a continuous charge device, an infinite number of charges are packed tightly together with just a small gap between them.
Now, coming to the given question;
Uniform Electric field = $E$
Speed of electron entering = ${v_0}$
Length of each plate =$l$
Mass of electron =$m$
The acceleration of electron is = $\dfrac{{eE}}{m}$
The horizontal velocity remains ${v_0}$ as there is no acceleration in this direction.
Thus, the time taken in crossing field $t = \dfrac{l}{{{v_0}}}$
The upward component of velocity of electron as it emerges from the field region is
$ \Rightarrow {V_y} = \alpha t = \dfrac{{eEl}}{{m{v_0}}}$
The horizontal component of velocity remains,
${v_y} = {v_0}$
The angle =$0$, made by the resultant velocity with the original direction is given by,
$\tan \theta = \dfrac{{{v_y}}}{{{v_x}}} = \dfrac{{eEl}}{{m{v_0}x{v_0}}}$
Thus, the electron deviates by an angle $\theta = {\tan ^{ - 1}}\left( {\dfrac{{eEl}}{{m{v_0}^2}}} \right)$
Note:Positive or negative charges pass through the electric field lines. Surface applications such as wound healing, corneal repair, and even brain and spinal stimulation with closely spaced, implanted electrodes are well suited for such sources.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

