Answer
Verified
404.8k+ views
Hint: Calculate the surface area of all three shapes separately and later add. Use respective known formulas of surface area.
Now it is given that
Height of cylindrical part,$h$ $ = 13cm$
Radius of cylindrical part,$r$ $ = 5cm$
The radii of the spherical part and base of the conical part are also $r$.Let us suppose ${h_1}$ be the height of the conical part and $l$ be the slant height of the conical part.
We Know that,
$
{l^2} = {r^2} + {h_1}^2 \\
\Rightarrow l = \sqrt {{r^2} + {h_1}^2} \\
\Rightarrow l = \sqrt {{5^2} + {{12}^2}} = 13cm \\
$
Now, the surface area of the toy$ = $ curved surface area of the cylindrical part$ + $ curved surface area of the hemispherical part$ + $ curved surface area of the conical part.
$
= \left( {2\pi rh + 2\pi {r^2} + \pi rl} \right)c{m^2} \\
= \pi r\left( {2h + 2r + l} \right)c{m^2} \\
= \left( {\dfrac{{22}}{7} \times 5 \times \left( {2 \times 13 + 2 \times 5 + 13} \right)} \right)c{m^2} \\
= 770c{m^2} \\
$
Therefore, the surface area of the toy$ = 770c{m^2}$
Note- Whenever we face such types of questions the key concept is that we should write what is given to us and then use the formula that is suitable according to the question, like we did. Here, we find the slant height, the slant height of the cone and then knowing the values of curved surface area of the cylindrical part, curved surface area of the hemispherical part and curved surface area of the conical part we get our answer.
Now it is given that
Height of cylindrical part,$h$ $ = 13cm$
Radius of cylindrical part,$r$ $ = 5cm$
The radii of the spherical part and base of the conical part are also $r$.Let us suppose ${h_1}$ be the height of the conical part and $l$ be the slant height of the conical part.
We Know that,
$
{l^2} = {r^2} + {h_1}^2 \\
\Rightarrow l = \sqrt {{r^2} + {h_1}^2} \\
\Rightarrow l = \sqrt {{5^2} + {{12}^2}} = 13cm \\
$
Now, the surface area of the toy$ = $ curved surface area of the cylindrical part$ + $ curved surface area of the hemispherical part$ + $ curved surface area of the conical part.
$
= \left( {2\pi rh + 2\pi {r^2} + \pi rl} \right)c{m^2} \\
= \pi r\left( {2h + 2r + l} \right)c{m^2} \\
= \left( {\dfrac{{22}}{7} \times 5 \times \left( {2 \times 13 + 2 \times 5 + 13} \right)} \right)c{m^2} \\
= 770c{m^2} \\
$
Therefore, the surface area of the toy$ = 770c{m^2}$
Note- Whenever we face such types of questions the key concept is that we should write what is given to us and then use the formula that is suitable according to the question, like we did. Here, we find the slant height, the slant height of the cone and then knowing the values of curved surface area of the cylindrical part, curved surface area of the hemispherical part and curved surface area of the conical part we get our answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE