Answer
Verified
372.9k+ views
Hint:When a body is in translational motion it moves with a linear acceleration while body rotates due to torque acting on it it produce an angular acceleration and the relation between torque and moment of inertia is related as $\vec \tau = I\vec \alpha $.
Complete step by step answer:
Let us assume that $I$ is the moment of inertia of the body and it’s given that:
The magnitude of angular acceleration of the body is $\alpha = 20\,rad\,{\sec ^{ - 2}}$.
The magnitude of torque acting on the body is $\tau = 400Nm$.
The mass of the given body is $m = 40\,Kg$.
Now, using the relation $\vec \tau = I\vec \alpha $ we get,
$400 = I \times 20$
$\therefore I = 20\,Kg{m^2}$
So, the moment of inertia of the body is $I = 20\,Kg{m^2}$.
Now, as we know that the general formula of Moment of inertia is written as,
$I = M{K^2}$
where $K$ denotes the radius of gyration
Now we have, the magnitude of moment of inertia is $I = 20\,Kg{m^2}$
Mass of the body is $m = 40\,Kg$
Putting these value in equation $I = M{K^2}$
We get,
$20 = 40 \times {K^2}$
$\Rightarrow K = \dfrac{1}{{\sqrt 2 }}$
$\therefore K = 0.707\,m$
So, the radius of gyration of the body is $K = 0.707m$
Hence, the moment of inertia of the body is $I = 20\,Kg\,{m^2}$ and the radius of gyration of the body is $K = 0.707\,m$.
Note: It should be remembered that, the radius of gyration of the body is the distance from the body to the axis of rotation which have same moment of inertia if whole mass of body considered to be act at that particular point and produce same moment of inertia with particular distance, this radius is called radius of gyration.
Complete step by step answer:
Let us assume that $I$ is the moment of inertia of the body and it’s given that:
The magnitude of angular acceleration of the body is $\alpha = 20\,rad\,{\sec ^{ - 2}}$.
The magnitude of torque acting on the body is $\tau = 400Nm$.
The mass of the given body is $m = 40\,Kg$.
Now, using the relation $\vec \tau = I\vec \alpha $ we get,
$400 = I \times 20$
$\therefore I = 20\,Kg{m^2}$
So, the moment of inertia of the body is $I = 20\,Kg{m^2}$.
Now, as we know that the general formula of Moment of inertia is written as,
$I = M{K^2}$
where $K$ denotes the radius of gyration
Now we have, the magnitude of moment of inertia is $I = 20\,Kg{m^2}$
Mass of the body is $m = 40\,Kg$
Putting these value in equation $I = M{K^2}$
We get,
$20 = 40 \times {K^2}$
$\Rightarrow K = \dfrac{1}{{\sqrt 2 }}$
$\therefore K = 0.707\,m$
So, the radius of gyration of the body is $K = 0.707m$
Hence, the moment of inertia of the body is $I = 20\,Kg\,{m^2}$ and the radius of gyration of the body is $K = 0.707\,m$.
Note: It should be remembered that, the radius of gyration of the body is the distance from the body to the axis of rotation which have same moment of inertia if whole mass of body considered to be act at that particular point and produce same moment of inertia with particular distance, this radius is called radius of gyration.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE