A torque of $400\,Nm$ acting on a body of mass $40\,Kg$ produces an angular acceleration of $20\,rad\,{\sec ^{ - 2}}$. What is the moment of inertia of the body? And find the radius of gyration of the body.
Answer
Verified
402.9k+ views
Hint:When a body is in translational motion it moves with a linear acceleration while body rotates due to torque acting on it it produce an angular acceleration and the relation between torque and moment of inertia is related as $\vec \tau = I\vec \alpha $.
Complete step by step answer:
Let us assume that $I$ is the moment of inertia of the body and it’s given that:
The magnitude of angular acceleration of the body is $\alpha = 20\,rad\,{\sec ^{ - 2}}$.
The magnitude of torque acting on the body is $\tau = 400Nm$.
The mass of the given body is $m = 40\,Kg$.
Now, using the relation $\vec \tau = I\vec \alpha $ we get,
$400 = I \times 20$
$\therefore I = 20\,Kg{m^2}$
So, the moment of inertia of the body is $I = 20\,Kg{m^2}$.
Now, as we know that the general formula of Moment of inertia is written as,
$I = M{K^2}$
where $K$ denotes the radius of gyration
Now we have, the magnitude of moment of inertia is $I = 20\,Kg{m^2}$
Mass of the body is $m = 40\,Kg$
Putting these value in equation $I = M{K^2}$
We get,
$20 = 40 \times {K^2}$
$\Rightarrow K = \dfrac{1}{{\sqrt 2 }}$
$\therefore K = 0.707\,m$
So, the radius of gyration of the body is $K = 0.707m$
Hence, the moment of inertia of the body is $I = 20\,Kg\,{m^2}$ and the radius of gyration of the body is $K = 0.707\,m$.
Note: It should be remembered that, the radius of gyration of the body is the distance from the body to the axis of rotation which have same moment of inertia if whole mass of body considered to be act at that particular point and produce same moment of inertia with particular distance, this radius is called radius of gyration.
Complete step by step answer:
Let us assume that $I$ is the moment of inertia of the body and it’s given that:
The magnitude of angular acceleration of the body is $\alpha = 20\,rad\,{\sec ^{ - 2}}$.
The magnitude of torque acting on the body is $\tau = 400Nm$.
The mass of the given body is $m = 40\,Kg$.
Now, using the relation $\vec \tau = I\vec \alpha $ we get,
$400 = I \times 20$
$\therefore I = 20\,Kg{m^2}$
So, the moment of inertia of the body is $I = 20\,Kg{m^2}$.
Now, as we know that the general formula of Moment of inertia is written as,
$I = M{K^2}$
where $K$ denotes the radius of gyration
Now we have, the magnitude of moment of inertia is $I = 20\,Kg{m^2}$
Mass of the body is $m = 40\,Kg$
Putting these value in equation $I = M{K^2}$
We get,
$20 = 40 \times {K^2}$
$\Rightarrow K = \dfrac{1}{{\sqrt 2 }}$
$\therefore K = 0.707\,m$
So, the radius of gyration of the body is $K = 0.707m$
Hence, the moment of inertia of the body is $I = 20\,Kg\,{m^2}$ and the radius of gyration of the body is $K = 0.707\,m$.
Note: It should be remembered that, the radius of gyration of the body is the distance from the body to the axis of rotation which have same moment of inertia if whole mass of body considered to be act at that particular point and produce same moment of inertia with particular distance, this radius is called radius of gyration.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE