
A thin circular disk of radius R is uniformly charged with density > per unit area. the disk rotates about its axis with a uniform angular speed . The magnetic moment of the disk is:-
A.
B.
C.
D
Answer
484.8k+ views
Hint: When charge is at rest it produces only electric fields but when charge is under motion it produces both electric and magnetic fields. So when a charged disc rotates current is produced due to it as charge is in motion and due to that current, magnetic moment is also produced.
Formula used:
Complete answer:
Due to the magnetic effect produced because of current flowing in the rotating disc, a magnetic field is produced which in turn creates the magnetic moment.
When an electron is revolving around the nucleus then that also produces the magnetic moment. Electrons under motion can be considered as a current flow and due to that current flowing, magnetic moment is produced.
The magnetic moment produced will be
Where M is the magnetic moment and q is the charge and ‘L’ is the angular momentum of rotation and ‘m’ the mass of the body which is rotating.
Now that result will be valid for all kinds of uniformly charged rotating bodies.
Hence for the uniformly charged disc,
Angular momentum of the rotating body will be . Moment of inertia of disc will be . Total charge distributed on the uniform disc will be . Where R is the radius and is the angular velocity of rotation and is the charge density.
Hence the final answer would be option D.
Note:
This can also be done by the method of integration i.e taking a small ring element and integrating that element for the entire disc by considering the charge on that ring element in terms of area and surface charge density, but that method will be long and difficult one when compared to this one. The given method is only valid when charge distribution is uniform.
Formula used:
Complete answer:
Due to the magnetic effect produced because of current flowing in the rotating disc, a magnetic field is produced which in turn creates the magnetic moment.
When an electron is revolving around the nucleus then that also produces the magnetic moment. Electrons under motion can be considered as a current flow and due to that current flowing, magnetic moment is produced.
The magnetic moment produced will be
Where M is the magnetic moment and q is the charge and ‘L’ is the angular momentum of rotation and ‘m’ the mass of the body which is rotating.
Now that result will be valid for all kinds of uniformly charged rotating bodies.
Hence for the uniformly charged disc,
Angular momentum of the rotating body will be
Hence the final answer would be option D.
Note:
This can also be done by the method of integration i.e taking a small ring element and integrating that element for the entire disc by considering the charge on that ring element in terms of area and surface charge density, but that method will be long and difficult one when compared to this one. The given method is only valid when charge distribution is uniform.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
School Full course for CBSE students
₹41,848 per year
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Why should a magnesium ribbon be cleaned before burning class 12 chemistry CBSE

A renewable exhaustible natural resources is A Coal class 12 biology CBSE

Megasporangium is equivalent to a Embryo sac b Fruit class 12 biology CBSE

What is Zeises salt and ferrocene Explain with str class 12 chemistry CBSE

How to calculate power in series and parallel circ class 12 physics CBSE
