A telephone wire $125\,m$ long and $1\,mm$ in radius is stretched to a length $125.25\,m$ when a force of $800\,N$ is applied. What is the value of Young’s modulus for material wire?
Answer
281.4k+ views
Hint: Young’s modulus describes the relationship between stress (force per unit area) and strain (proportional deformation in an object. The Young’s modulus is named after the British scientist Thomas Young. A solid object deforms when a particular load is applied to it.
Complete step by step answer:
Given, Original length of telephone wire, $l = 125\,m$
Length after stretched, ${l_f} = 125.25\,m$
Radius of telephone wire, $r = 1\,mm$
Radius of telephone wire, $r = 0.001\,m$
Cross section area of telephone wire,
$\therefore A = \pi {r^2}$
Put the value
\[ A = \dfrac{{22}}{7} \times {(0.001)^2}\]
$ \Rightarrow 3.14 \times {10^{ - 6}}$
Change in length, $\Delta l = ?$
$\therefore \Delta l = {l_f} - l$
Put the value
$ \Delta l = 125.25 - 125$
$ \Rightarrow \Delta l = 0.25\,m$
Strain in telephone wire, $\varepsilon = ?$
As we know that
$\varepsilon = \dfrac{{\Delta l}}{l}$
Put the value
$ \varepsilon = \dfrac{{0.25}}{{125}} \\$
$ \Rightarrow \varepsilon = 0.002$
Now
Young’s modulus,
$Y = \dfrac{{\dfrac{F}{A}}}{{\dfrac{{\Delta l}}{l}}}$
Put the value
$Y = \dfrac{{\dfrac{{800}}{{3.14 \times {{10}^6}}}}}{{\dfrac{{0.25}}{{125}}}} \\$
Simplify
$\Rightarrow Y = \dfrac{{800 \times 125}}{{3.14 \times {{10}^{ - 6}} \times 0.25}} \\$
$\therefore Y = 1.27 \times {10^{11}}Pa$
Hence, the value of Young’s modulus for material wire is $1.27 \times {10^{11}}\,Pa$.
Note: The young’s modulus of a material is a fundamental property of every material that cannot be changed. It is dependent upon temperature and pressure however. The young’s modulus is the essence, the stiffness of a material. In other words, it is how easily it is bended or stretched.
Complete step by step answer:
Given, Original length of telephone wire, $l = 125\,m$
Length after stretched, ${l_f} = 125.25\,m$
Radius of telephone wire, $r = 1\,mm$
Radius of telephone wire, $r = 0.001\,m$
Cross section area of telephone wire,
$\therefore A = \pi {r^2}$
Put the value
\[ A = \dfrac{{22}}{7} \times {(0.001)^2}\]
$ \Rightarrow 3.14 \times {10^{ - 6}}$
Change in length, $\Delta l = ?$
$\therefore \Delta l = {l_f} - l$
Put the value
$ \Delta l = 125.25 - 125$
$ \Rightarrow \Delta l = 0.25\,m$
Strain in telephone wire, $\varepsilon = ?$
As we know that
$\varepsilon = \dfrac{{\Delta l}}{l}$
Put the value
$ \varepsilon = \dfrac{{0.25}}{{125}} \\$
$ \Rightarrow \varepsilon = 0.002$
Now
Young’s modulus,
$Y = \dfrac{{\dfrac{F}{A}}}{{\dfrac{{\Delta l}}{l}}}$
Put the value
$Y = \dfrac{{\dfrac{{800}}{{3.14 \times {{10}^6}}}}}{{\dfrac{{0.25}}{{125}}}} \\$
Simplify
$\Rightarrow Y = \dfrac{{800 \times 125}}{{3.14 \times {{10}^{ - 6}} \times 0.25}} \\$
$\therefore Y = 1.27 \times {10^{11}}Pa$
Hence, the value of Young’s modulus for material wire is $1.27 \times {10^{11}}\,Pa$.
Note: The young’s modulus of a material is a fundamental property of every material that cannot be changed. It is dependent upon temperature and pressure however. The young’s modulus is the essence, the stiffness of a material. In other words, it is how easily it is bended or stretched.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Define absolute refractive index of a medium

Which of the following would not be a valid reason class 11 biology CBSE

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What is meant by monosporic development of female class 11 biology CBSE

Trending doubts
Change the following sentences into negative and interrogative class 10 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is 1 divided by 0 class 8 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Convert compound sentence to simple sentence He is class 10 english CBSE

India lies between latitudes and longitudes class 12 social science CBSE

Why are rivers important for the countrys economy class 12 social science CBSE

Distinguish between Khadar and Bhangar class 9 social science CBSE
