# A single force acts on a $3.0\,kg$ particle-like object whose position is given by $x=3.0t-4.0{{t}^{2}}+1.0{{t}^{3}}$, with $x$ in meter and $t$ in seconds. Find the work done by the force from $t=0$ to $t=4.0s$.

Last updated date: 18th Mar 2023

•

Total views: 205.5k

•

Views today: 2.84k

Answer

Verified

205.5k+ views

**Hint:**We have to use the concept of work energy theorem to solve this question. Work energy theorem is the relation between the work done by the force and corresponding energy.Work done by all the forces on the system is equal to change in kinetic energy of the system.

**Complete step by step answer:**

When we find change in kinetic energy, we need initial and final velocity of the object's.Velocity is rate of change of displacement

$v=\dfrac{dx}{dt}$

In this problem displacement as a function of time

$x=3.0t-4.0{{t}^{2}}+1.0{{t}^{3}}$

Put this displacement in formula of velocity then,

It can be written as

$v=\dfrac{d}{dt}(3.0t-4.0{{t}^{2}}+1.0{{t}^{3}})$

When we differentiate the velocity with respect to time then, we get

$v=3-8t+3{{t}^{2}}$

The object starts moving at $t=0$, it means when we put $t=0$ in the velocity, we get the initial velocity

Put $t=0$in velocity

${{v}_{i}}=3-8\times 0+3\times 0$

$\Rightarrow {{v}_{i}}=3m/s$

Therefore the initial velocity is $3\,m/s$.

The object comes in rest at $t=4$, it means when we put $t=4$in the velocity, we get the final velocity

Put $t=4$in velocity

${{v}_{f}}=3-8\times 4+3\times 4\times 4$

$\Rightarrow {{v}_{f}}=19\,m/s$

Therefore the final velocity is $19\,m/s$. When we calculate the work done, we use work energy theorem

$w=\Delta k$ $........equation1$

Where, $w$ is work done and $\Delta k$ is change in kinetic energy.

S.I Unit of work done is $Joule$.

Now, we calculate change in kinetic energy

\[\Delta k=\dfrac{1}{2}m(v_{f}^{2}-v_{i}^{2})\]

After putting the value of $m$,${{v}_{i}}$ and ${{v}_{f}}$, we get

\[\Delta k=\dfrac{1}{2}\times 3\times [{{(19)}^{2}}-{{(3)}^{2}}]\]

$\Rightarrow \Delta k=\dfrac{1}{2}\times 3\times [361-9]$

$\Rightarrow \Delta k=\dfrac{1}{2}\times 3\times 352$

$\Rightarrow \Delta k=528J$

We put the value of $\Delta k$ in equation1

$w=\Delta k$

$\therefore w=528\,J$

**Hence, the work done by the force is $528\,J$.**

**Note:**According to law of conservation of energy total mechanical energy is the sum of kinetic energy and potential energy but in this question change in potential energy is zero, so all the mechanical energy is converted into kinetic energy.

Recently Updated Pages

Which element possesses the biggest atomic radii A class 11 chemistry JEE_Main

The highly efficient method of obtaining beryllium class 11 chemistry JEE_Main

Which of the following sulphates has the highest solubility class 11 chemistry JEE_Main

Amongst the metal Be Mg Ca and Sr of group 2 of the class 11 chemistry JEE_Main

Which of the following metals is present in the greencolored class 11 chemistry JEE_Main

To prevent magnesium from oxidation in the electrolytic class 11 chemistry JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is the difference between anaerobic aerobic respiration class 10 biology CBSE