
A sample of hydrazine sulphate $\left( {{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{6}}}{\text{S}}{{\text{O}}_{\text{4}}}} \right)$ was dissolved in $100{\text{ mL}}$ of water and $10{\text{ mL}}$ of this solution was reacted with excess of ferric chloride solution and warmed to complete the reaction. Ferrous ion formed was estimated and it required $20{\text{ mL}}$ of $\dfrac{M}{{50}}$ potassium permanganate solution. Estimate the amount of hydrazine sulphate in $1{\text{ L}}$ of the solution. Reactions are given below:
${\text{4F}}{{\text{e}}^{3 + }} + {{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}} \to {{\text{N}}_{\text{2}}} + {\text{4F}}{{\text{e}}^{2 + }} + {\text{4}}{{\text{H}}^ + }$
${\text{MnO}}_4^ - + {\text{5F}}{{\text{e}}^{2 + }} + {\text{8}}{{\text{H}}^ + } \to {\text{M}}{{\text{n}}^{2 + }} + {\text{5F}}{{\text{e}}^{3 + }} + {\text{4}}{{\text{H}}_{\text{2}}}{\text{O}}$
(A) $1.91{\text{ g}}$
(B) $3.82{\text{ g}}$
(C) $2.71{\text{ g}}$
(D) $6.50{\text{ g}}$
Answer
547.5k+ views
Hint: First calculate the normality of $20{\text{ mL}}$ of $\dfrac{M}{{50}}$ potassium permanganate solution. For this, carefully calculate the valency factor for potassium permanganate. Then from the reaction stoichiometry, calculate the equivalent mass of hydrazine sulphate. Then calculate the amount of hydrazine sulphate.
Complete step-by-step solution:We are given the reactions as follows:
${\text{4F}}{{\text{e}}^{3 + }} + {{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}} \to {{\text{N}}_{\text{2}}} + {\text{4F}}{{\text{e}}^{2 + }} + {\text{4}}{{\text{H}}^ + }$
${\text{MnO}}_4^ - + {\text{5F}}{{\text{e}}^{2 + }} + {\text{8}}{{\text{H}}^ + } \to {\text{M}}{{\text{n}}^{2 + }} + {\text{5F}}{{\text{e}}^{3 + }} + {\text{4}}{{\text{H}}_{\text{2}}}{\text{O}}$
The relation between normality and molarity is as follows:
\[{\text{Normality}} = n \times {\text{Molarity}}\]
Where \[n\] is the valency factor i.e. the change in oxidation state of an atom in a compound per molecule.
From the reaction, we can see that ${\text{MnO}}_4^ - $ changes to ${\text{M}}{{\text{n}}^{2 + }}$. Thus, the oxidation state changes from $ + 7$ to $ + 2$. Thus, the valency factor for ${\text{KMn}}{{\text{O}}_{\text{4}}}$ is 5.
Thus, the normality of $20{\text{ mL}}$ of $\dfrac{M}{{50}}$ potassium permanganate solution is,
\[{\text{Normality}} = 5 \times {\text{20 mL}}\dfrac{M}{{50}}{\text{KMn}}{{\text{O}}_4}\]
\[{\text{Normality}} = {\text{20 mL}}\dfrac{N}{{10}}{\text{KMn}}{{\text{O}}_4}\]
From the given reactions, we can see that,
\[{\text{20 mL}}\dfrac{N}{{10}}{\text{KMn}}{{\text{O}}_4} \equiv {\text{20 mL}}\dfrac{N}{{10}}{\text{F}}{{\text{e}}^{2 + }} \equiv {\text{20 mL}}\dfrac{N}{{10}}{\text{FeC}}{{\text{l}}_3} \equiv {\text{20 mL}}\dfrac{N}{{10}}{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{6}}}{\text{S}}{{\text{O}}_{\text{4}}}\]
From the reaction, we can see that ${{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}$ changes to ${{\text{N}}_{\text{2}}}$. Thus, the oxidation state changes from $ + 4$ to 0. Thus, the valency factor for \[{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{6}}}{\text{S}}{{\text{O}}_{\text{4}}}\] is 4.
Thus, the equivalent mass of \[{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{6}}}{\text{S}}{{\text{O}}_{\text{4}}}\] is,
${\text{Equivalent mass}} = \dfrac{{{\text{Molar mass}}}}{4}$
${\text{Equivalent mass}} = \dfrac{{{\text{130}}}}{4} = 32.5$
Thus, the amount of hydrazine sulphate i.e. \[{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{6}}}{\text{S}}{{\text{O}}_{\text{4}}}\] in $10{\text{ mL}}$ solution is,
Amount of hydrazine sulphate $ = \dfrac{1}{{10}} \times \dfrac{{32.5}}{{1000}} \times 20 = 0.065{\text{ g}}$
Thus, the amount of hydrazine sulphate i.e. \[{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{6}}}{\text{S}}{{\text{O}}_{\text{4}}}\] in one litre solution is,
Amount of hydrazine sulphate $ = \dfrac{{0.065{\text{ g}}}}{{10{\text{ mL}}}} \times 1000{\text{ mL}} = 6.50{\text{ g}}$
Thus, the amount of hydrazine sulphate in $1{\text{ L}}$ of the solution is $6.50{\text{ g}}$.
Thus, the correct option is (D) $6.50{\text{ g}}$.
Note:Remember that the valency factor is the change in oxidation state of an atom in a compound per molecule. When ${\text{MnO}}_4^ - $ changes to ${\text{M}}{{\text{n}}^{2 + }}$, the oxidation state changes from $ + 7$ to $ + 2$. Thus, the valency factor for ${\text{KMn}}{{\text{O}}_{\text{4}}}$ is 5. When ${{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}$ changes to ${{\text{N}}_{\text{2}}}$ the oxidation state changes from $ + 4$ to 0. Thus, the valency factor for \[{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{6}}}{\text{S}}{{\text{O}}_{\text{4}}}\] is 4.
Complete step-by-step solution:We are given the reactions as follows:
${\text{4F}}{{\text{e}}^{3 + }} + {{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}} \to {{\text{N}}_{\text{2}}} + {\text{4F}}{{\text{e}}^{2 + }} + {\text{4}}{{\text{H}}^ + }$
${\text{MnO}}_4^ - + {\text{5F}}{{\text{e}}^{2 + }} + {\text{8}}{{\text{H}}^ + } \to {\text{M}}{{\text{n}}^{2 + }} + {\text{5F}}{{\text{e}}^{3 + }} + {\text{4}}{{\text{H}}_{\text{2}}}{\text{O}}$
The relation between normality and molarity is as follows:
\[{\text{Normality}} = n \times {\text{Molarity}}\]
Where \[n\] is the valency factor i.e. the change in oxidation state of an atom in a compound per molecule.
From the reaction, we can see that ${\text{MnO}}_4^ - $ changes to ${\text{M}}{{\text{n}}^{2 + }}$. Thus, the oxidation state changes from $ + 7$ to $ + 2$. Thus, the valency factor for ${\text{KMn}}{{\text{O}}_{\text{4}}}$ is 5.
Thus, the normality of $20{\text{ mL}}$ of $\dfrac{M}{{50}}$ potassium permanganate solution is,
\[{\text{Normality}} = 5 \times {\text{20 mL}}\dfrac{M}{{50}}{\text{KMn}}{{\text{O}}_4}\]
\[{\text{Normality}} = {\text{20 mL}}\dfrac{N}{{10}}{\text{KMn}}{{\text{O}}_4}\]
From the given reactions, we can see that,
\[{\text{20 mL}}\dfrac{N}{{10}}{\text{KMn}}{{\text{O}}_4} \equiv {\text{20 mL}}\dfrac{N}{{10}}{\text{F}}{{\text{e}}^{2 + }} \equiv {\text{20 mL}}\dfrac{N}{{10}}{\text{FeC}}{{\text{l}}_3} \equiv {\text{20 mL}}\dfrac{N}{{10}}{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{6}}}{\text{S}}{{\text{O}}_{\text{4}}}\]
From the reaction, we can see that ${{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}$ changes to ${{\text{N}}_{\text{2}}}$. Thus, the oxidation state changes from $ + 4$ to 0. Thus, the valency factor for \[{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{6}}}{\text{S}}{{\text{O}}_{\text{4}}}\] is 4.
Thus, the equivalent mass of \[{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{6}}}{\text{S}}{{\text{O}}_{\text{4}}}\] is,
${\text{Equivalent mass}} = \dfrac{{{\text{Molar mass}}}}{4}$
${\text{Equivalent mass}} = \dfrac{{{\text{130}}}}{4} = 32.5$
Thus, the amount of hydrazine sulphate i.e. \[{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{6}}}{\text{S}}{{\text{O}}_{\text{4}}}\] in $10{\text{ mL}}$ solution is,
Amount of hydrazine sulphate $ = \dfrac{1}{{10}} \times \dfrac{{32.5}}{{1000}} \times 20 = 0.065{\text{ g}}$
Thus, the amount of hydrazine sulphate i.e. \[{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{6}}}{\text{S}}{{\text{O}}_{\text{4}}}\] in one litre solution is,
Amount of hydrazine sulphate $ = \dfrac{{0.065{\text{ g}}}}{{10{\text{ mL}}}} \times 1000{\text{ mL}} = 6.50{\text{ g}}$
Thus, the amount of hydrazine sulphate in $1{\text{ L}}$ of the solution is $6.50{\text{ g}}$.
Thus, the correct option is (D) $6.50{\text{ g}}$.
Note:Remember that the valency factor is the change in oxidation state of an atom in a compound per molecule. When ${\text{MnO}}_4^ - $ changes to ${\text{M}}{{\text{n}}^{2 + }}$, the oxidation state changes from $ + 7$ to $ + 2$. Thus, the valency factor for ${\text{KMn}}{{\text{O}}_{\text{4}}}$ is 5. When ${{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}$ changes to ${{\text{N}}_{\text{2}}}$ the oxidation state changes from $ + 4$ to 0. Thus, the valency factor for \[{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{6}}}{\text{S}}{{\text{O}}_{\text{4}}}\] is 4.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Why is steel more elastic than rubber class 11 physics CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

