
A rope of mass 5 Kg is moving vertically with an upward force of 100 N acting at the upper end and a downward force of 70 N acting at the lower end. The tension at the mid-point of rope is.
Answer
504.9k+ views
Hint: In the question it is given that the rope with mass is moving upwards by action of force. We can analyse that there will be gravitational force or weight will be acting along with given external force. As the rope is moving upwards that force will be greater in action.
We can use formula $ {F_1} = {F_2} + mg + ma$
Complete answer:
In this question we are given with
Mass of the rope is 5 Kg
The force acting in upward direction is 100N
The force in downward direction is 70N
It is known from the law of motion that all the forces must balance each other in order to attain equilibrium.
Using the formula in accordance with the law of motion we get,
$
{F_1} = {F_2} + mg + ma \\
\Rightarrow 100 = 70 + (5 \times 10) + 5 \times a \\
\Rightarrow 30 - 50 = 5 \times a \\
$
From the above equations we will get the solution as
$ a = 4m/{s^2}$
It is in the downward direction
But, we are asked to find the tension at the midpoint.
Let, the mass of the half rope be 2.5 Kg.
Using the laws of motion we have
\[
{F_1} = {F_2} + mg + ma \\
\Rightarrow T = 70 + 2.5g - 2.5 \times 4 \\
\Rightarrow T = 85N \\
\]
So, we get the tension at the midpoint of rope as 85N.
Note: A string or rope is often idealized as a single dimension, having length but being massless with no cross section or also known as zero cross section. If there are no bends in the string, as occur with pulleys. The tension is a constant along the string, equal to the magnitude of the forces applied by the ends of the string.
Every force has an equal and opposite reaction.
We can use formula $ {F_1} = {F_2} + mg + ma$
Complete answer:
In this question we are given with
Mass of the rope is 5 Kg
The force acting in upward direction is 100N
The force in downward direction is 70N
It is known from the law of motion that all the forces must balance each other in order to attain equilibrium.
Using the formula in accordance with the law of motion we get,
$
{F_1} = {F_2} + mg + ma \\
\Rightarrow 100 = 70 + (5 \times 10) + 5 \times a \\
\Rightarrow 30 - 50 = 5 \times a \\
$
From the above equations we will get the solution as
$ a = 4m/{s^2}$
It is in the downward direction
But, we are asked to find the tension at the midpoint.
Let, the mass of the half rope be 2.5 Kg.
Using the laws of motion we have
\[
{F_1} = {F_2} + mg + ma \\
\Rightarrow T = 70 + 2.5g - 2.5 \times 4 \\
\Rightarrow T = 85N \\
\]
So, we get the tension at the midpoint of rope as 85N.
Note: A string or rope is often idealized as a single dimension, having length but being massless with no cross section or also known as zero cross section. If there are no bends in the string, as occur with pulleys. The tension is a constant along the string, equal to the magnitude of the forces applied by the ends of the string.
Every force has an equal and opposite reaction.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

