Answer
Verified
395.7k+ views
Hint: We describe the relation between the sides of a rectangle and its area. We increase the length of the sides following the percentage increase. We find the change in areas and find its percentage.
Complete step by step solution:
It is given that the dimensions of the rectangle is $40m\times 25m$ which means length is $40m$ and breadth is $25m$.
The area of the rectangle was $40\times 25=1000{{m}^{2}}$.
Now we have increased the length and breadth by 15%.
For the given percentage 15% of 40 and 15% of 25, we first need to find the mathematical form.
We know for any arbitrary percentage value of a%, we can write it as $\dfrac{a}{100}$. The percentage is to find the respective value out of 100. The increased value for the main number $x$ becomes $x+\dfrac{ax}{100}=x\left( 1+\dfrac{a}{100} \right)$.
Therefore, 15% increase on 25 can be written as $25\left( 1+\dfrac{15}{100} \right)=\dfrac{25\times 115}{100}=28.75$.
Therefore, 15% increase on 40 can be written as $40\left( 1+\dfrac{15}{100} \right)=\dfrac{40\times 115}{100}=46$.
The length and the breadth of the new rectangle becomes $46m\times 28.75m$.
The area of the new rectangle was $46\times 28.75=1322.5{{m}^{2}}$.
The increase in the area is $1322.5-1000=322.5{{m}^{2}}$.
The percentage increase will be $\dfrac{322.5}{1000}\times 100=32.25$.
Therefore, the percentage increase in the rectangle’s area is $32.25$
Note: The value of the fraction is actually the unitary value of 15 out of 100. Therefore, in percentage value we got $32.25$ as the percentage. Percentage deals with the ratio out of 100. The ratio value for both fraction and percentage is the same.
Complete step by step solution:
It is given that the dimensions of the rectangle is $40m\times 25m$ which means length is $40m$ and breadth is $25m$.
The area of the rectangle was $40\times 25=1000{{m}^{2}}$.
Now we have increased the length and breadth by 15%.
For the given percentage 15% of 40 and 15% of 25, we first need to find the mathematical form.
We know for any arbitrary percentage value of a%, we can write it as $\dfrac{a}{100}$. The percentage is to find the respective value out of 100. The increased value for the main number $x$ becomes $x+\dfrac{ax}{100}=x\left( 1+\dfrac{a}{100} \right)$.
Therefore, 15% increase on 25 can be written as $25\left( 1+\dfrac{15}{100} \right)=\dfrac{25\times 115}{100}=28.75$.
Therefore, 15% increase on 40 can be written as $40\left( 1+\dfrac{15}{100} \right)=\dfrac{40\times 115}{100}=46$.
The length and the breadth of the new rectangle becomes $46m\times 28.75m$.
The area of the new rectangle was $46\times 28.75=1322.5{{m}^{2}}$.
The increase in the area is $1322.5-1000=322.5{{m}^{2}}$.
The percentage increase will be $\dfrac{322.5}{1000}\times 100=32.25$.
Therefore, the percentage increase in the rectangle’s area is $32.25$
Note: The value of the fraction is actually the unitary value of 15 out of 100. Therefore, in percentage value we got $32.25$ as the percentage. Percentage deals with the ratio out of 100. The ratio value for both fraction and percentage is the same.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE