Answer

Verified

401.1k+ views

**Hint:**We need to relate the given temperatures of the recruit’s body, the sauna room, the outside sky and the snow to find the thermal radiation exchange rates. We need to use Stefan-Boltzmann's law to find the solution for this problem.

**Complete answer:**

We know from Stefan-Boltzmann's law of thermal radiation that the rate of emission of thermal radiation is proportional to the area of the radiating surface, the fourth power of the temperature difference between the body and the surrounding and the emissivity of the body. This can be mathematically given as –

\[P=e\sigma A({{T}^{4}}-{{T}_{S}}^{4})\]

Where, P is the thermal radiation rate,

e is the emissivity of the object,

\[\sigma \] is the Stefan’s constant,

T is the temperature of the object and

\[{{T}_{S}}\] is the temperature of the surrounding.

Now, let us consider the situation given to us. We have men being recruited to the club. We can estimate the height of the man to be almost 2 meters. We can consider his body as a cylinder (body) of height 1.8 m and radius 0.15 m and a sphere (head) of radius 0.10 m. We can find the surface area of his entire body including head as –

\[\begin{align}

& A={{A}_{cyl}}+{{A}_{sph}} \\

& \Rightarrow A=2\pi rh+\pi {{r}^{2}}+4\pi r{{'}^{2}} \\

& \Rightarrow A=\pi \{(2\times 0.15\times 1.8)+({{0.15}^{2}})+4({{0.10}^{2}})\} \\

& \therefore A=1.8{{m}^{2}} \\

\end{align}\]

Now, lets us consider each of the cases given in the question one-by-one.

Case I: The thermal radiation exchange between the body at \[{{102}^{0}}F\]and the sauna bath at \[{{30}^{0}}C\].

Let us convert both the temperatures into Kelvin scale as –

\[\begin{align}

& \Rightarrow {{102}^{0}}F=\dfrac{5}{9}{{(102-32)}^{0}}C={{38.89}^{0}}C \\

& \therefore {{102}^{0}}F=(273+38.89)K=311.89K \\

& \Rightarrow {{30}^{0}}C=(273+30)K=303K \\

\end{align}\]

The thermal radiation exchange rate using Stefan-Boltzmann’s law as –

\[\begin{align}

& P=e\sigma A({{T}^{4}}-{{T}_{S}}^{4}) \\

& \Rightarrow P=e\sigma A({{T}_{body}}^{4}-{{T}_{sauna}}^{4}) \\

& \Rightarrow P=0.80\times 5.6703\times {{10}^{-8}}\times 1.8({{311.89}^{4}}-{{303}^{4}}) \\

& \therefore P=84.4W \\

\end{align}\]

The power radiated is 84.4W from the recruit’s body to the sauna bath.

Case II: The thermal radiation exchange between the half the area of the body at 311.89K and the sky temperature of \[-{{25}^{0}}C\].

The sky temperature of \[-{{25}^{0}}C\] can be converted to Kelvin scale as –

\[\Rightarrow -{{25}^{0}}C=(273-25)K=248K\]

The thermal radiation exchange rate using the Stefan-Boltzmann’s law is given as –

\[\begin{align}

& P=e\sigma A({{T}^{4}}-{{T}_{S}}^{4}) \\

& \Rightarrow P=e\sigma {{A}_{half}}({{T}_{body}}^{4}-{{T}_{sky}}^{4}) \\

& \Rightarrow P=0.80\times 5.6703\times {{10}^{-8}}\times 0.9({{311.89}^{4}}-{{248}^{4}}) \\

& \therefore P=231.8W \\

\end{align}\]

The power radiated is 231.8W from the recruit’s body to the sky.

Case III: The thermal radiation exchange rate from the half area of the recruit’s body at 311.89K to the snow and ground at temperature \[-{{80}^{0}}C\].

The ground temperature can be converted to the Kelvin scale as –

\[\Rightarrow -{{80}^{0}}C=(273-80)K=193K\]

The thermal radiation exchange rate using the formula is given as –

\[\begin{align}

& P=e\sigma A({{T}^{4}}-{{T}_{S}}^{4}) \\

& \Rightarrow P=e\sigma {{A}_{half}}({{T}_{body}}^{4}-{{T}_{snow}}^{4}) \\

& \Rightarrow P=0.80\times 5.6703\times {{10}^{-8}}\times 0.9({{311.89}^{4}}-{{193}^{4}}) \\

& \therefore P=329.6W \\

\end{align}\]

The power radiated from the recruit to the ground is about 330W.

So, we get the thermal radiation exchange rate for the three situations as –

(i)From body to sauna as 84.4W

(ii) From body to sky as 231.8W

(iii) From body to ground as 330W.

These are the required solutions.

**Note:**

The quantity we have found is the net power radiated from the recruit’s body in the form of heat. We know that the power radiated is the rate of change of energy radiated. So, it is the thermal radiation exchange rate that we have found as required in the problem.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

How many crores make 10 million class 7 maths CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE