Answer
Verified
470.1k+ views
Hint: - This question may be interpreted in two ways, which we shall discuss separately.
I) If we consider that all numbers of shillings are equally likely, we shall have three hypothesis:
i. All the coins may be shillings
ii. Three of them may be shillings
iii. Only two of them may be shillings
Here${P_1} = {P_2} = {P_3}$
Also${p_1} = 1,{p_2} = \dfrac{1}{2},{p_3} = \dfrac{1}{6}$
Hence probability of first hypothesis is${Q_1}$
$ = 1 \div \left( {1 + \dfrac{1}{2} + \dfrac{1}{6}} \right) = \dfrac{6}{{10}}$
Probability of second hypothesis is${Q_2}$
$ = \dfrac{1}{2} \div \left( {1 + \dfrac{1}{2} + \dfrac{1}{6}} \right) = \dfrac{3}{{10}}$
Probability of third hypothesis is${Q_3}$
$ = \dfrac{1}{6} \div \left( {1 + \dfrac{1}{2} + \dfrac{1}{6}} \right) = \dfrac{1}{{10}}$
Therefore the probability that another drawing will give a sovereign is
$
= \left( {{Q_1} \times 0} \right) + \left( {{Q_2} \times \dfrac{1}{4}} \right) + \left( {{Q_3} \times \dfrac{2}{4}} \right) \\
= \left( {\dfrac{6}{{10}} \times 0} \right) + \left( {\dfrac{3}{{10}} \times \dfrac{1}{4}} \right) + \left( {\dfrac{1}{{10}} \times \dfrac{2}{4}} \right) \\
= \dfrac{3}{{40}} + \dfrac{2}{{40}} \\
= \dfrac{5}{{40}} = \dfrac{1}{8} \\
$
II) If each coin is equally likely to be a shilling or sovereign, by taking the terms in the expansion of
${\left( {\dfrac{1}{2} + \dfrac{1}{2}} \right)^4}$, we see that the chance of four shillings is$\dfrac{1}{{16}}$, of three shillings is$\dfrac{4}{{16}}$, of two shillings is$\dfrac{6}{{16}}$; thus
${P_1} = \dfrac{1}{{16}},{P_2} = \dfrac{4}{{16}},{P_3} = \dfrac{6}{{16}}$
Also, as before ${p_1} = 1,{p_2} = \dfrac{1}{2},{p_3} = \dfrac{1}{6}$.
Hence$\dfrac{{{Q_1}}}{6} = \dfrac{{{Q_2}}}{{12}} = \dfrac{{{Q_3}}}{6} = \dfrac{{{Q_1} + {Q_2} + {Q_3}}}{6} = \dfrac{1}{{24}}$
Therefore the probability that another drawing will give a sovereign
$
= \left( {{Q_1} \times 0} \right) + \left( {{Q_2} \times \dfrac{1}{4}} \right) + \left( {{Q_3} \times \dfrac{2}{4}} \right) \\
= \left( {\dfrac{1}{4} \times 0} \right) + \left( {\dfrac{1}{2} \times \dfrac{1}{4}} \right) + \left( {\dfrac{1}{4} \times \dfrac{2}{4}} \right) \\
= 0 + \dfrac{1}{8} + \dfrac{2}{{16}} \\
= \dfrac{1}{4} \\
$
Note: - Both the methods used above are equally correct till the direction is not mentioned in the question. In case of mutually exclusive events, such as in the above probability of different events are found out separately and then added to find the final probability.
I) If we consider that all numbers of shillings are equally likely, we shall have three hypothesis:
i. All the coins may be shillings
ii. Three of them may be shillings
iii. Only two of them may be shillings
Here${P_1} = {P_2} = {P_3}$
Also${p_1} = 1,{p_2} = \dfrac{1}{2},{p_3} = \dfrac{1}{6}$
Hence probability of first hypothesis is${Q_1}$
$ = 1 \div \left( {1 + \dfrac{1}{2} + \dfrac{1}{6}} \right) = \dfrac{6}{{10}}$
Probability of second hypothesis is${Q_2}$
$ = \dfrac{1}{2} \div \left( {1 + \dfrac{1}{2} + \dfrac{1}{6}} \right) = \dfrac{3}{{10}}$
Probability of third hypothesis is${Q_3}$
$ = \dfrac{1}{6} \div \left( {1 + \dfrac{1}{2} + \dfrac{1}{6}} \right) = \dfrac{1}{{10}}$
Therefore the probability that another drawing will give a sovereign is
$
= \left( {{Q_1} \times 0} \right) + \left( {{Q_2} \times \dfrac{1}{4}} \right) + \left( {{Q_3} \times \dfrac{2}{4}} \right) \\
= \left( {\dfrac{6}{{10}} \times 0} \right) + \left( {\dfrac{3}{{10}} \times \dfrac{1}{4}} \right) + \left( {\dfrac{1}{{10}} \times \dfrac{2}{4}} \right) \\
= \dfrac{3}{{40}} + \dfrac{2}{{40}} \\
= \dfrac{5}{{40}} = \dfrac{1}{8} \\
$
II) If each coin is equally likely to be a shilling or sovereign, by taking the terms in the expansion of
${\left( {\dfrac{1}{2} + \dfrac{1}{2}} \right)^4}$, we see that the chance of four shillings is$\dfrac{1}{{16}}$, of three shillings is$\dfrac{4}{{16}}$, of two shillings is$\dfrac{6}{{16}}$; thus
${P_1} = \dfrac{1}{{16}},{P_2} = \dfrac{4}{{16}},{P_3} = \dfrac{6}{{16}}$
Also, as before ${p_1} = 1,{p_2} = \dfrac{1}{2},{p_3} = \dfrac{1}{6}$.
Hence$\dfrac{{{Q_1}}}{6} = \dfrac{{{Q_2}}}{{12}} = \dfrac{{{Q_3}}}{6} = \dfrac{{{Q_1} + {Q_2} + {Q_3}}}{6} = \dfrac{1}{{24}}$
Therefore the probability that another drawing will give a sovereign
$
= \left( {{Q_1} \times 0} \right) + \left( {{Q_2} \times \dfrac{1}{4}} \right) + \left( {{Q_3} \times \dfrac{2}{4}} \right) \\
= \left( {\dfrac{1}{4} \times 0} \right) + \left( {\dfrac{1}{2} \times \dfrac{1}{4}} \right) + \left( {\dfrac{1}{4} \times \dfrac{2}{4}} \right) \\
= 0 + \dfrac{1}{8} + \dfrac{2}{{16}} \\
= \dfrac{1}{4} \\
$
Note: - Both the methods used above are equally correct till the direction is not mentioned in the question. In case of mutually exclusive events, such as in the above probability of different events are found out separately and then added to find the final probability.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
10 examples of evaporation in daily life with explanations
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference Between Plant Cell and Animal Cell
What are the monomers and polymers of carbohydrate class 12 chemistry CBSE