
A particle is projected from point G such that it touches the points B, C, D and E of a regular hexagon of side ‘a’. Its horizontal range GH is
A. $\sqrt 3 a$
B. $\sqrt 5 a$
C. $\sqrt {7a} $
D. None
Answer
567k+ views
Hint: Find the coordinates of the points B, C, D and E and put it in the equation of the parabolic path of the projectile described by the particle. The coordinates of the points B, C, D and E satisfy the equation of the parabola.
Complete step by step answer:Let origin be the midpoint of AF. Then the coordinates of B, C, D and E is given by$B\left( { - a,a\dfrac{{\sqrt 3 }}{2}} \right)$ , $C\left( {\dfrac{{ - a}}{2},a\sqrt 3 } \right)$ , $D\left( {\dfrac{a}{2},a\sqrt 3 } \right)$ , $E\left( {a,a\dfrac{{\sqrt 3 }}{2}} \right)$
The projectile will describe a parabola which is symmetrical about the y-axis. Lets the roots of the path traced by the parabola be r and –r. Then the equation of the parabola is given by $y = k(x - r)(x + r)$ \[ \Rightarrow y = k({x^2} - {r^2})\]
Since the points B and C lie on this parabola, so its coordinates must satisfy the equation of the parabola. Putting the corresponding values of x and y of B in\[y = k({x^2} - {r^2})\], we get
\[a\dfrac{{\sqrt 3 }}{2} = k({a^2} - {r^2})\] ………….(1)
Now, putting corresponding values of x and y of C in\[y = k({x^2} - {r^2})\], we get
\[a\sqrt 3 = k(\dfrac{{{a^2}}}{4} - {r^2})\] ………….(2)
Dividing equations (1) and (2), we get
\[\dfrac{1}{2} = 4\left( {\dfrac{{{a^2} - {r^2}}}{{{a^2} - 4{r^2}}}} \right)\] \[ \Rightarrow {a^2} - 4{r^2} = 8{a^2} - 8{r^2}\]
\[ \Rightarrow 7{a^2} = 4{r^2}\] \[ \Rightarrow r = \dfrac{{a\sqrt 7 }}{2}\]
As the horizontal range is from –r to r, that is 2r.
So, the horizontal range is equal to \[2 \times a\sqrt 7 = \sqrt 7 a\]
Hence, the correct option is (C).
Note:Projectile is the name given to a body thrown with some initial velocity with the horizontal direction and then allowed to move in two dimensions under the influence of gravity. The path followed by a projectile is called its trajectory. The path of a projectile projected horizontally from a point on the ground is a parabola which is symmetrical about the y-axis.
Complete step by step answer:Let origin be the midpoint of AF. Then the coordinates of B, C, D and E is given by$B\left( { - a,a\dfrac{{\sqrt 3 }}{2}} \right)$ , $C\left( {\dfrac{{ - a}}{2},a\sqrt 3 } \right)$ , $D\left( {\dfrac{a}{2},a\sqrt 3 } \right)$ , $E\left( {a,a\dfrac{{\sqrt 3 }}{2}} \right)$
The projectile will describe a parabola which is symmetrical about the y-axis. Lets the roots of the path traced by the parabola be r and –r. Then the equation of the parabola is given by $y = k(x - r)(x + r)$ \[ \Rightarrow y = k({x^2} - {r^2})\]
Since the points B and C lie on this parabola, so its coordinates must satisfy the equation of the parabola. Putting the corresponding values of x and y of B in\[y = k({x^2} - {r^2})\], we get
\[a\dfrac{{\sqrt 3 }}{2} = k({a^2} - {r^2})\] ………….(1)
Now, putting corresponding values of x and y of C in\[y = k({x^2} - {r^2})\], we get
\[a\sqrt 3 = k(\dfrac{{{a^2}}}{4} - {r^2})\] ………….(2)
Dividing equations (1) and (2), we get
\[\dfrac{1}{2} = 4\left( {\dfrac{{{a^2} - {r^2}}}{{{a^2} - 4{r^2}}}} \right)\] \[ \Rightarrow {a^2} - 4{r^2} = 8{a^2} - 8{r^2}\]
\[ \Rightarrow 7{a^2} = 4{r^2}\] \[ \Rightarrow r = \dfrac{{a\sqrt 7 }}{2}\]
As the horizontal range is from –r to r, that is 2r.
So, the horizontal range is equal to \[2 \times a\sqrt 7 = \sqrt 7 a\]
Hence, the correct option is (C).
Note:Projectile is the name given to a body thrown with some initial velocity with the horizontal direction and then allowed to move in two dimensions under the influence of gravity. The path followed by a projectile is called its trajectory. The path of a projectile projected horizontally from a point on the ground is a parabola which is symmetrical about the y-axis.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

