
A particle is free to move on x-axis, in which of the following case, the particle will execute oscillation about $x = $ ?
a) $F = (x-1)$
b) $F = - (x-1)^{2}$
c) $F = - (x-1)^{3}$
d) $F = (x-1)^{3}$
Answer
501.3k+ views
Hint: Let us consider a particle which is free to move on x-axis, then restoring force acts on the body i.e., $F =-kx^{n}$ . If n will be odd. Force should be along the positive x-axis for negative points on x-axis. Force should be along the negative x-axis for positive points on x-axis. Force should be zero for zero on x-axis. Then the particle will move to oscillate about a given point.
Complete step-by-step solution:
a) Given: $F = (x-1)$
When, $x = 1; F = 0$
When, $x > 1; F = +ve$
When, $x < 1; F = -ve$
This equation resembles with the equation of Simple Harmonic motion. Hence, the motion is Simple Harmonic.
b) Given: $F = - (x-1)^{2}$
When, $x = 1; F = 0$
When, $x > 1; F = -ve$
When, $x < 1; F = -ve$
In this case, motion is rectilinear motion. In rectilinear motion, particle move along a straight line.
c) Given: $F = - (x-1)^{3}$
When, $x = 1; F = 0$
When, $x > 1; F = -ve$
When, $x < 1; F = +ve$
In this case, motion is oscillatory about $x = 1$.
d) Given: $F = (x-1)^{3}$
When, $x = 1; F = 0$
When, $x > 1; F = +ve$
When, $x < 1; F = -ve$
So, this motion is not oscillatory.
Option (c) will be correct.
Note:Let us consider a particle which is free to move on x-axis, then restoring force acts on the body i.e., $F = -k x^{n}$ . If n will be even. Force should be along the negative x-axis for negative and positive points on the x-axis. Then the particle will not oscillate about a given point but will move rectilinearly.
Complete step-by-step solution:
a) Given: $F = (x-1)$
When, $x = 1; F = 0$
When, $x > 1; F = +ve$
When, $x < 1; F = -ve$
This equation resembles with the equation of Simple Harmonic motion. Hence, the motion is Simple Harmonic.
b) Given: $F = - (x-1)^{2}$
When, $x = 1; F = 0$
When, $x > 1; F = -ve$
When, $x < 1; F = -ve$
In this case, motion is rectilinear motion. In rectilinear motion, particle move along a straight line.
c) Given: $F = - (x-1)^{3}$
When, $x = 1; F = 0$
When, $x > 1; F = -ve$
When, $x < 1; F = +ve$
In this case, motion is oscillatory about $x = 1$.
d) Given: $F = (x-1)^{3}$
When, $x = 1; F = 0$
When, $x > 1; F = +ve$
When, $x < 1; F = -ve$
So, this motion is not oscillatory.
Option (c) will be correct.
Note:Let us consider a particle which is free to move on x-axis, then restoring force acts on the body i.e., $F = -k x^{n}$ . If n will be even. Force should be along the negative x-axis for negative and positive points on the x-axis. Then the particle will not oscillate about a given point but will move rectilinearly.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

