A particle is free to move on x-axis, in which of the following case, the particle will execute oscillation about $x = $ ?
a) $F = (x-1)$
b) $F = - (x-1)^{2}$
c) $F = - (x-1)^{3}$
d) $F = (x-1)^{3}$
Answer
281.1k+ views
Hint: Let us consider a particle which is free to move on x-axis, then restoring force acts on the body i.e., $F =-kx^{n}$ . If n will be odd. Force should be along the positive x-axis for negative points on x-axis. Force should be along the negative x-axis for positive points on x-axis. Force should be zero for zero on x-axis. Then the particle will move to oscillate about a given point.
Complete step-by-step solution:
a) Given: $F = (x-1)$
When, $x = 1; F = 0$
When, $x > 1; F = +ve$
When, $x < 1; F = -ve$
This equation resembles with the equation of Simple Harmonic motion. Hence, the motion is Simple Harmonic.
b) Given: $F = - (x-1)^{2}$
When, $x = 1; F = 0$
When, $x > 1; F = -ve$
When, $x < 1; F = -ve$
In this case, motion is rectilinear motion. In rectilinear motion, particle move along a straight line.
c) Given: $F = - (x-1)^{3}$
When, $x = 1; F = 0$
When, $x > 1; F = -ve$
When, $x < 1; F = +ve$
In this case, motion is oscillatory about $x = 1$.
d) Given: $F = (x-1)^{3}$
When, $x = 1; F = 0$
When, $x > 1; F = +ve$
When, $x < 1; F = -ve$
So, this motion is not oscillatory.
Option (c) will be correct.
Note:Let us consider a particle which is free to move on x-axis, then restoring force acts on the body i.e., $F = -k x^{n}$ . If n will be even. Force should be along the negative x-axis for negative and positive points on the x-axis. Then the particle will not oscillate about a given point but will move rectilinearly.
Complete step-by-step solution:
a) Given: $F = (x-1)$
When, $x = 1; F = 0$
When, $x > 1; F = +ve$
When, $x < 1; F = -ve$
This equation resembles with the equation of Simple Harmonic motion. Hence, the motion is Simple Harmonic.
b) Given: $F = - (x-1)^{2}$
When, $x = 1; F = 0$
When, $x > 1; F = -ve$
When, $x < 1; F = -ve$
In this case, motion is rectilinear motion. In rectilinear motion, particle move along a straight line.
c) Given: $F = - (x-1)^{3}$
When, $x = 1; F = 0$
When, $x > 1; F = -ve$
When, $x < 1; F = +ve$
In this case, motion is oscillatory about $x = 1$.
d) Given: $F = (x-1)^{3}$
When, $x = 1; F = 0$
When, $x > 1; F = +ve$
When, $x < 1; F = -ve$
So, this motion is not oscillatory.
Option (c) will be correct.
Note:Let us consider a particle which is free to move on x-axis, then restoring force acts on the body i.e., $F = -k x^{n}$ . If n will be even. Force should be along the negative x-axis for negative and positive points on the x-axis. Then the particle will not oscillate about a given point but will move rectilinearly.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Define absolute refractive index of a medium

Which of the following would not be a valid reason class 11 biology CBSE

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What is meant by monosporic development of female class 11 biology CBSE

Trending doubts
Which of the following Chief Justice of India has acted class 10 social science CBSE

Green glands are excretory organs of A Crustaceans class 11 biology CBSE

What if photosynthesis does not occur in plants class 11 biology CBSE

What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

10 slogans on organ donation class 8 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE
