Answer
Verified
495k+ views
Hint: Find vertices of parallelogram by intersection of tangents (sides of parallelogram) using parametric coordinates of point of contacts.
We have ellipse given;
$\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1................\left( i \right)$
As, given in question, two of the angular points of parallelogram is lying on ${{x}^{2}}={{h}^{2}}$.
$ABCD$is a parallelogram.
Let $AB,BC,CD,DA$ is touching ellipse at points $P,Q,R,S$ respectively. In other language, we can say that two tangents are drawn from points $P\text{ and }S,$ two tangents are from $P\text{ and }Q,$ two from $Q\text{ and }R;$ similarly, two tangents from $R\text{ and }S,$ which are intersecting at $A,B,C\And D$ respectively.
Let two points which are lying on ${{x}^{2}}={{h}^{2}}$are $B$and $D$.
Let point $P\text{ and }Q$ is $\left( a\cos \alpha ,b\sin \alpha \right)$ and $\left( a\cos \beta ,b\sin \beta \right)$ as parametric coordinates on ellipse $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1.$
We know that tangent from any point $\left( {{x}_{1}},{{y}_{1}} \right)$ on ellipse is;
$T=0$
Or $\dfrac{x{{x}_{1}}}{{{a}_{2}}}+\dfrac{y{{y}_{1}}}{{{b}_{2}}}=1$
Hence, tangents through $P\left( a\cos \alpha ,b\sin \alpha \right)$ and $Q\left( a\cos \beta ,b\sin \beta \right)$;
$\dfrac{x\cos \alpha }{a}+\dfrac{y\sin \alpha }{b}=1\left( PB \right).............\left( ii \right)$
$\dfrac{x\cos \beta }{a}+\dfrac{y\sin \beta }{b}=1\left( BQ \right).............\left( iii \right)$
Let us find intersecting point of equation (ii) and (iii);
By cross multiplication method from equation (ii) and (iii);
$\begin{align}
& \dfrac{x}{\dfrac{\sin \alpha }{b}-\dfrac{\sin \beta }{b}}=\dfrac{-y}{\dfrac{\cos \alpha }{a}-\dfrac{\cos \beta }{a}}=\dfrac{-1}{\dfrac{\cos \alpha }{a}\dfrac{\sin \beta }{b}-\dfrac{\sin \alpha \cos \beta }{ab}} \\
& \dfrac{bx}{\left( \sin \alpha -\sin \beta \right)}=\dfrac{-ay}{\cos \alpha -\cos \beta }=\dfrac{-ab}{\cos \alpha \sin \beta -\sin \alpha \cos \beta } \\
\end{align}$
Simplifying the above relation to get $x$ and $y$
$x=\dfrac{a\left( \sin \alpha -\sin \beta \right)}{\sin \alpha \cos \beta -\cos \alpha \sin \beta },y=\dfrac{-b\left( \cos \alpha -\cos \beta \right)}{\sin \alpha \cos \beta -\cos \alpha \sin \beta }$
We have;
$\begin{align}
& \sin C-\sin D=2\sin \dfrac{C-D}{2}\cos \dfrac{C+D}{2} \\
& \cos C-\cos D=-2\sin \dfrac{C-D}{2}\sin \dfrac{C+D}{2} \\
& \sin C\cos D-\cos C\sin D=\sin \left( C-D \right) \\
\end{align}$
Therefore, we can rewrite $x$ and $y$as;
$x=\dfrac{2a\sin \left( \dfrac{\alpha -\beta }{2} \right)\cos \left( \dfrac{\alpha +\beta }{2} \right)}{\sin \left( \alpha -\beta \right)},y=\dfrac{2b\sin \dfrac{\alpha -\beta }{2}\sin \dfrac{\alpha +\beta }{2}}{-\sin \left( \alpha -\beta \right)}$
We have;
\[\begin{align}
& \sin 2\theta =2\sin \theta \cos \theta \\
& x=\dfrac{2a\sin \left( \dfrac{\alpha -\beta }{2} \right)\cos \left( \dfrac{\alpha +\beta }{2} \right)}{2\sin \left( \dfrac{\alpha -\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)}=\dfrac{a\cos \left( \dfrac{\alpha +\beta }{2} \right)}{\cos \left( \dfrac{\alpha -\beta }{2} \right)} \\
& y=\dfrac{2b\sin \left( \dfrac{\alpha -\beta }{2} \right)\sin \left( \dfrac{\alpha +\beta }{2} \right)}{2\sin \left( \dfrac{\alpha -\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)}=\dfrac{b\sin \left( \dfrac{\alpha +\beta }{2} \right)}{\cos \left( \dfrac{\alpha -\beta }{2} \right)} \\
& \left( x,y \right)=\left( \dfrac{a\cos \left( \dfrac{\alpha +\beta }{2} \right)}{\cos \left( \dfrac{\alpha -\beta }{2} \right)},\dfrac{b\sin \left( \dfrac{\alpha +\beta }{2} \right)}{\cos \left( \dfrac{\alpha -\beta }{2} \right)} \right)..........\left( iv \right) \\
\end{align}\]
Calculated $\left( x,y \right)$ in equation (iv) will lie on ${{x}^{2}}={{h}^{2}}$which is intersection of $PB$ and $BQ$ .
Let us find out points $A$ or $C$ of which we need to find locus.
Let us find out the intersection of $QC$ and $RC$ which is point $C$. Let's coordinate the point $C$ is $\left( {{x}_{_{1}}},{{y}_{1}} \right)$.
The parametric coordinate of point $Q$ is $\left( a\cos \beta ,b\sin \beta \right)$.
Now, by symmetry point $P$ and $R$ will lie exactly opposite to other as shown below;
Hence, parametric coordinate of point $R$is $a\cos \left( \pi +\alpha \right),b\sin \left( \pi +\alpha \right)\text{ or }-a\cos \alpha ,-b\sin \alpha .$
Now, let us write equation of tangents passing through $C$ i.e., $RC$ and $QC$ ;
$\begin{align}
& T=0 \\
& \dfrac{-xa\cos \alpha }{{{a}^{2}}}\dfrac{-yb\sin \alpha }{{{b}^{2}}}=1 \\
& \dfrac{x\cos \alpha }{a}+\dfrac{y\sin \alpha }{b}+1=0.............\left( v \right) \\
\end{align}$
Another tangent through $Q$ is;
$\dfrac{x\cos \beta }{a}+\dfrac{y\sin \beta }{b}-1=0.............\left( vi \right)$
Let us find out intersection of above two equations by cross multiplication method:
$\begin{align}
& \dfrac{x}{\dfrac{-\sin \alpha }{b}-\dfrac{\sin \beta }{b}}=\dfrac{-y}{\dfrac{-\cos \alpha }{a}-\dfrac{\cos \beta }{a}}=\dfrac{1}{\dfrac{\cos \alpha }{a}\dfrac{\sin \beta }{b}-\dfrac{\sin \alpha }{b}\dfrac{\cos \beta }{a}} \\
& \dfrac{-bx}{\sin \alpha +\sin \beta }=\dfrac{ay}{\cos \alpha +\cos \beta }=\dfrac{ab}{\cos \alpha \sin \beta -\sin \alpha \cos \beta } \\
\end{align}$
Now, we can write values of $x$ and $y$ as;
$\begin{align}
& x=\dfrac{a\left( \sin \alpha +\cos \beta \right)}{\sin \alpha \cos \beta -\cos \alpha \sin \beta } \\
& y=\dfrac{b\left( \cos \alpha +\cos \beta \right)}{\cos \alpha \sin \beta -\sin \alpha \cos \beta } \\
\end{align}$
We have,
$\begin{align}
& \sin C+\sin D=2\sin \dfrac{C+D}{2}\cos \dfrac{C-D}{2} \\
& \cos C+\cos D=-2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2} \\
& \sin C\cos D-\cos C\sin D=\sin \left( C-D \right) \\
\end{align}$
Therefore, we can write $x$ and $y$ as;
$x=\dfrac{2a\sin \dfrac{\alpha +\beta }{2}\cos \dfrac{\alpha -\beta }{2}}{\sin \left( \alpha -\beta \right)}$
$\begin{align}
& x=\dfrac{2a\sin \dfrac{\alpha +\beta }{2}\cos \dfrac{\alpha -\beta }{2}}{2\sin \dfrac{\alpha -\beta }{2}\cos \dfrac{\alpha -\beta }{2}} \\
& x=\dfrac{a\sin \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}} \\
\end{align}$
And,
$\begin{align}
& y=\dfrac{2b\cos \dfrac{\alpha +\beta }{2}\cos \dfrac{\alpha -\beta }{2}}{\sin \left( \beta -\alpha \right)} \\
& y=\dfrac{2b\cos \dfrac{\alpha +\beta }{2}\cos \dfrac{\alpha -\beta }{2}}{-2\sin \dfrac{\alpha -\beta }{2}\cos \dfrac{\alpha -\beta }{2}} \\
& y=\dfrac{-b\cos \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}} \\
\end{align}$
Now, we have point $C\left( {{x}_{_{1}}},{{y}_{1}} \right)$as;
$\left( {{x}_{_{1}}},{{y}_{1}} \right)=\left( \dfrac{a\sin \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}},\dfrac{-b\cos \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}} \right).............\left( vii \right)$
As we have point $B(x,y)$ calculated in equation (iv) and will satisfy equation ${{x}^{2}}={{h}^{2}}$. Putting value of $x$ from equation (iv) to ${{x}^{2}}={{h}^{2}}$, we get;
$\dfrac{{{a}^{2}}{{\cos }^{2}}\dfrac{\alpha +\beta }{2}}{{{\cos }^{2}}\dfrac{\alpha -\beta }{2}}={{h}^{2}}...........\left( viii \right)$
Now, let us find out values of ${{\cos }^{2}}\dfrac{\alpha +\beta }{2}$,${{\cos }^{2}}\dfrac{\alpha -\beta }{2}$from equation (vii) in terms of ${{x}_{1}}\text{ and }{{y}_{1}}$, as;
${{x}_{_{1}}}=\dfrac{a\sin \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}},{{y}_{1}}=\dfrac{-b\cos \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}}$
Dividing ${{x}_{1}}\text{ and }{{y}_{1}}$, we get;
$\left( \dfrac{{{x}_{1}}}{{{y}_{1}}} \right)=\dfrac{-a}{b}\tan \left( \dfrac{\alpha +\beta }{2} \right)$
Squaring both sides, we get;
\[\left( \dfrac{{{x}_{1}}^{2}}{{{y}_{1}}^{2}} \right)=\dfrac{{{a}^{2}}}{{{b}^{2}}}{{\tan }^{2}}\left( \dfrac{\alpha +\beta }{2} \right)\]
We have relation $1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $ or${{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1,$using it in above equation, we get;
\[\begin{align}
& \dfrac{{{b}^{2}}{{x}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}}={{\sec }^{2}}\dfrac{\alpha +\beta }{2}-1 \\
& {{\sec }^{2}}\dfrac{\alpha +\beta }{2}=1+\dfrac{{{b}^{2}}{{x}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}} \\
& {{\sec }^{2}}\dfrac{\alpha +\beta }{2}=\dfrac{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}} \\
& Or\text{ co}{{\text{s}}^{2}}\dfrac{\alpha +\beta }{2}=\dfrac{{{a}^{2}}{{y}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}}............\left( ix \right) \\
\end{align}\]
Now, let us calculate square of ${{x}_{1}}$;
${{x}_{_{1}}}^{2}=\dfrac{{{a}^{2}}{{\sin }^{2}}\dfrac{\alpha +\beta }{2}}{{{\sin }^{2}}\left( \dfrac{\alpha -\beta }{2} \right)}$
We have${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$; Hence;
$\begin{align}
& {{x}_{_{1}}}^{2}=\dfrac{{{a}^{2}}\left( 1-{{\cos }^{2}}\dfrac{\alpha +\beta }{2} \right)}{{{\sin }^{2}}\left( \dfrac{\alpha -\beta }{2} \right)} \\
& {{\sin }^{2}}\dfrac{\alpha -\beta }{2}=\dfrac{{{a}^{2}}}{{{x}_{_{1}}}^{2}}\left( 1-\dfrac{{{a}^{2}}{{y}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \right) \\
& {{\sin }^{2}}\dfrac{\alpha -\beta }{2}=\dfrac{{{a}^{2}}}{{{x}_{_{1}}}^{2}}\left( \dfrac{{{b}^{2}}{{x}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \right) \\
& {{\sin }^{2}}\dfrac{\alpha -\beta }{2}=\dfrac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \\
& Or\text{ }1-{{\cos }^{2}}\dfrac{\alpha -\beta }{2}=\dfrac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \\
& {{\cos }^{2}}\dfrac{\alpha -\beta }{2}=\dfrac{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}-{{a}^{2}}{{b}^{2}}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}}...........\left( x \right) \\
\end{align}$
Putting values of ${{\cos }^{2}}\dfrac{\alpha +\beta }{2},{{\cos }^{2}}\dfrac{\alpha -\beta }{2}$from equation (ix) and (x) in equation (viii), we get;
$\begin{align}
& \dfrac{{{a}^{2}}\left( \dfrac{{{a}^{2}}{{y}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \right)}{\left( \dfrac{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}-{{a}^{2}}{{b}^{2}}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \right)}={{h}^{2}} \\
& \dfrac{{{a}^{4}}{{y}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}-{{a}^{2}}{{b}^{2}}}={{h}^{2}} \\
& \dfrac{{{a}^{4}}{{y}_{1}}^{2}}{{{h}^{2}}}={{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}-{{a}^{2}}{{b}^{2}} \\
& {{a}^{2}}{{b}^{2}}={{y}_{1}}^{2}\left( {{a}^{2}}-\dfrac{{{a}^{2}}}{{{h}^{2}}} \right)+{{b}^{2}}{{x}_{1}}^{2} \\
\end{align}$
Dividing both sides by ${{a}^{2}}{{b}^{2}}$, we get;
$1=\dfrac{{{y}_{1}}^{2}}{{{b}^{2}}}\left( 1-\dfrac{{{a}^{2}}}{{{h}^{2}}} \right)+\dfrac{{{x}_{1}}^{2}}{{{a}^{2}}}$
Replacing $\left( {{x}_{1}},{{y}_{1}} \right)$ by $\left( x,y \right)$ to get the required locus, we get;
$\dfrac{{{x}_{1}}^{2}}{{{a}^{2}}}+\dfrac{{{y}_{1}}^{2}}{{{b}^{2}}}\left( 1-\dfrac{{{a}^{2}}}{{{h}^{2}}} \right)=1$
Hence, proved.
Note: One can calculate intersection of tangent $PA$ and $AS$ to get point $A$ where point $P\text{ and }S$ has parametric coordinates as $\left( a\cos \alpha ,b\sin \alpha \right),\left( a\cos \left( \pi +\beta \right),b\sin \left( \pi +\beta \right) \right)$. Solution will be the same. Calculation is the important part of these kinds of questions.
One can use a substitution and elimination approach to find intersecting points of tangents but that will be a longer process than cross – multiplication which gives $\left( x,y \right)$ in one line.
By symmetry of ellipse points $\left( P,R \right)\text{ and }\left( Q,S \right)$ will be opposite to each other at a difference of $180{}^\circ $ eccentric angle which is the key point of this question..
We have ellipse given;
$\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1................\left( i \right)$
As, given in question, two of the angular points of parallelogram is lying on ${{x}^{2}}={{h}^{2}}$.
$ABCD$is a parallelogram.
Let $AB,BC,CD,DA$ is touching ellipse at points $P,Q,R,S$ respectively. In other language, we can say that two tangents are drawn from points $P\text{ and }S,$ two tangents are from $P\text{ and }Q,$ two from $Q\text{ and }R;$ similarly, two tangents from $R\text{ and }S,$ which are intersecting at $A,B,C\And D$ respectively.
Let two points which are lying on ${{x}^{2}}={{h}^{2}}$are $B$and $D$.
Let point $P\text{ and }Q$ is $\left( a\cos \alpha ,b\sin \alpha \right)$ and $\left( a\cos \beta ,b\sin \beta \right)$ as parametric coordinates on ellipse $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1.$
We know that tangent from any point $\left( {{x}_{1}},{{y}_{1}} \right)$ on ellipse is;
$T=0$
Or $\dfrac{x{{x}_{1}}}{{{a}_{2}}}+\dfrac{y{{y}_{1}}}{{{b}_{2}}}=1$
Hence, tangents through $P\left( a\cos \alpha ,b\sin \alpha \right)$ and $Q\left( a\cos \beta ,b\sin \beta \right)$;
$\dfrac{x\cos \alpha }{a}+\dfrac{y\sin \alpha }{b}=1\left( PB \right).............\left( ii \right)$
$\dfrac{x\cos \beta }{a}+\dfrac{y\sin \beta }{b}=1\left( BQ \right).............\left( iii \right)$
Let us find intersecting point of equation (ii) and (iii);
By cross multiplication method from equation (ii) and (iii);
$\begin{align}
& \dfrac{x}{\dfrac{\sin \alpha }{b}-\dfrac{\sin \beta }{b}}=\dfrac{-y}{\dfrac{\cos \alpha }{a}-\dfrac{\cos \beta }{a}}=\dfrac{-1}{\dfrac{\cos \alpha }{a}\dfrac{\sin \beta }{b}-\dfrac{\sin \alpha \cos \beta }{ab}} \\
& \dfrac{bx}{\left( \sin \alpha -\sin \beta \right)}=\dfrac{-ay}{\cos \alpha -\cos \beta }=\dfrac{-ab}{\cos \alpha \sin \beta -\sin \alpha \cos \beta } \\
\end{align}$
Simplifying the above relation to get $x$ and $y$
$x=\dfrac{a\left( \sin \alpha -\sin \beta \right)}{\sin \alpha \cos \beta -\cos \alpha \sin \beta },y=\dfrac{-b\left( \cos \alpha -\cos \beta \right)}{\sin \alpha \cos \beta -\cos \alpha \sin \beta }$
We have;
$\begin{align}
& \sin C-\sin D=2\sin \dfrac{C-D}{2}\cos \dfrac{C+D}{2} \\
& \cos C-\cos D=-2\sin \dfrac{C-D}{2}\sin \dfrac{C+D}{2} \\
& \sin C\cos D-\cos C\sin D=\sin \left( C-D \right) \\
\end{align}$
Therefore, we can rewrite $x$ and $y$as;
$x=\dfrac{2a\sin \left( \dfrac{\alpha -\beta }{2} \right)\cos \left( \dfrac{\alpha +\beta }{2} \right)}{\sin \left( \alpha -\beta \right)},y=\dfrac{2b\sin \dfrac{\alpha -\beta }{2}\sin \dfrac{\alpha +\beta }{2}}{-\sin \left( \alpha -\beta \right)}$
We have;
\[\begin{align}
& \sin 2\theta =2\sin \theta \cos \theta \\
& x=\dfrac{2a\sin \left( \dfrac{\alpha -\beta }{2} \right)\cos \left( \dfrac{\alpha +\beta }{2} \right)}{2\sin \left( \dfrac{\alpha -\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)}=\dfrac{a\cos \left( \dfrac{\alpha +\beta }{2} \right)}{\cos \left( \dfrac{\alpha -\beta }{2} \right)} \\
& y=\dfrac{2b\sin \left( \dfrac{\alpha -\beta }{2} \right)\sin \left( \dfrac{\alpha +\beta }{2} \right)}{2\sin \left( \dfrac{\alpha -\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)}=\dfrac{b\sin \left( \dfrac{\alpha +\beta }{2} \right)}{\cos \left( \dfrac{\alpha -\beta }{2} \right)} \\
& \left( x,y \right)=\left( \dfrac{a\cos \left( \dfrac{\alpha +\beta }{2} \right)}{\cos \left( \dfrac{\alpha -\beta }{2} \right)},\dfrac{b\sin \left( \dfrac{\alpha +\beta }{2} \right)}{\cos \left( \dfrac{\alpha -\beta }{2} \right)} \right)..........\left( iv \right) \\
\end{align}\]
Calculated $\left( x,y \right)$ in equation (iv) will lie on ${{x}^{2}}={{h}^{2}}$which is intersection of $PB$ and $BQ$ .
Let us find out points $A$ or $C$ of which we need to find locus.
Let us find out the intersection of $QC$ and $RC$ which is point $C$. Let's coordinate the point $C$ is $\left( {{x}_{_{1}}},{{y}_{1}} \right)$.
The parametric coordinate of point $Q$ is $\left( a\cos \beta ,b\sin \beta \right)$.
Now, by symmetry point $P$ and $R$ will lie exactly opposite to other as shown below;
Hence, parametric coordinate of point $R$is $a\cos \left( \pi +\alpha \right),b\sin \left( \pi +\alpha \right)\text{ or }-a\cos \alpha ,-b\sin \alpha .$
Now, let us write equation of tangents passing through $C$ i.e., $RC$ and $QC$ ;
$\begin{align}
& T=0 \\
& \dfrac{-xa\cos \alpha }{{{a}^{2}}}\dfrac{-yb\sin \alpha }{{{b}^{2}}}=1 \\
& \dfrac{x\cos \alpha }{a}+\dfrac{y\sin \alpha }{b}+1=0.............\left( v \right) \\
\end{align}$
Another tangent through $Q$ is;
$\dfrac{x\cos \beta }{a}+\dfrac{y\sin \beta }{b}-1=0.............\left( vi \right)$
Let us find out intersection of above two equations by cross multiplication method:
$\begin{align}
& \dfrac{x}{\dfrac{-\sin \alpha }{b}-\dfrac{\sin \beta }{b}}=\dfrac{-y}{\dfrac{-\cos \alpha }{a}-\dfrac{\cos \beta }{a}}=\dfrac{1}{\dfrac{\cos \alpha }{a}\dfrac{\sin \beta }{b}-\dfrac{\sin \alpha }{b}\dfrac{\cos \beta }{a}} \\
& \dfrac{-bx}{\sin \alpha +\sin \beta }=\dfrac{ay}{\cos \alpha +\cos \beta }=\dfrac{ab}{\cos \alpha \sin \beta -\sin \alpha \cos \beta } \\
\end{align}$
Now, we can write values of $x$ and $y$ as;
$\begin{align}
& x=\dfrac{a\left( \sin \alpha +\cos \beta \right)}{\sin \alpha \cos \beta -\cos \alpha \sin \beta } \\
& y=\dfrac{b\left( \cos \alpha +\cos \beta \right)}{\cos \alpha \sin \beta -\sin \alpha \cos \beta } \\
\end{align}$
We have,
$\begin{align}
& \sin C+\sin D=2\sin \dfrac{C+D}{2}\cos \dfrac{C-D}{2} \\
& \cos C+\cos D=-2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2} \\
& \sin C\cos D-\cos C\sin D=\sin \left( C-D \right) \\
\end{align}$
Therefore, we can write $x$ and $y$ as;
$x=\dfrac{2a\sin \dfrac{\alpha +\beta }{2}\cos \dfrac{\alpha -\beta }{2}}{\sin \left( \alpha -\beta \right)}$
$\begin{align}
& x=\dfrac{2a\sin \dfrac{\alpha +\beta }{2}\cos \dfrac{\alpha -\beta }{2}}{2\sin \dfrac{\alpha -\beta }{2}\cos \dfrac{\alpha -\beta }{2}} \\
& x=\dfrac{a\sin \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}} \\
\end{align}$
And,
$\begin{align}
& y=\dfrac{2b\cos \dfrac{\alpha +\beta }{2}\cos \dfrac{\alpha -\beta }{2}}{\sin \left( \beta -\alpha \right)} \\
& y=\dfrac{2b\cos \dfrac{\alpha +\beta }{2}\cos \dfrac{\alpha -\beta }{2}}{-2\sin \dfrac{\alpha -\beta }{2}\cos \dfrac{\alpha -\beta }{2}} \\
& y=\dfrac{-b\cos \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}} \\
\end{align}$
Now, we have point $C\left( {{x}_{_{1}}},{{y}_{1}} \right)$as;
$\left( {{x}_{_{1}}},{{y}_{1}} \right)=\left( \dfrac{a\sin \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}},\dfrac{-b\cos \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}} \right).............\left( vii \right)$
As we have point $B(x,y)$ calculated in equation (iv) and will satisfy equation ${{x}^{2}}={{h}^{2}}$. Putting value of $x$ from equation (iv) to ${{x}^{2}}={{h}^{2}}$, we get;
$\dfrac{{{a}^{2}}{{\cos }^{2}}\dfrac{\alpha +\beta }{2}}{{{\cos }^{2}}\dfrac{\alpha -\beta }{2}}={{h}^{2}}...........\left( viii \right)$
Now, let us find out values of ${{\cos }^{2}}\dfrac{\alpha +\beta }{2}$,${{\cos }^{2}}\dfrac{\alpha -\beta }{2}$from equation (vii) in terms of ${{x}_{1}}\text{ and }{{y}_{1}}$, as;
${{x}_{_{1}}}=\dfrac{a\sin \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}},{{y}_{1}}=\dfrac{-b\cos \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}}$
Dividing ${{x}_{1}}\text{ and }{{y}_{1}}$, we get;
$\left( \dfrac{{{x}_{1}}}{{{y}_{1}}} \right)=\dfrac{-a}{b}\tan \left( \dfrac{\alpha +\beta }{2} \right)$
Squaring both sides, we get;
\[\left( \dfrac{{{x}_{1}}^{2}}{{{y}_{1}}^{2}} \right)=\dfrac{{{a}^{2}}}{{{b}^{2}}}{{\tan }^{2}}\left( \dfrac{\alpha +\beta }{2} \right)\]
We have relation $1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $ or${{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1,$using it in above equation, we get;
\[\begin{align}
& \dfrac{{{b}^{2}}{{x}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}}={{\sec }^{2}}\dfrac{\alpha +\beta }{2}-1 \\
& {{\sec }^{2}}\dfrac{\alpha +\beta }{2}=1+\dfrac{{{b}^{2}}{{x}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}} \\
& {{\sec }^{2}}\dfrac{\alpha +\beta }{2}=\dfrac{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}} \\
& Or\text{ co}{{\text{s}}^{2}}\dfrac{\alpha +\beta }{2}=\dfrac{{{a}^{2}}{{y}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}}............\left( ix \right) \\
\end{align}\]
Now, let us calculate square of ${{x}_{1}}$;
${{x}_{_{1}}}^{2}=\dfrac{{{a}^{2}}{{\sin }^{2}}\dfrac{\alpha +\beta }{2}}{{{\sin }^{2}}\left( \dfrac{\alpha -\beta }{2} \right)}$
We have${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$; Hence;
$\begin{align}
& {{x}_{_{1}}}^{2}=\dfrac{{{a}^{2}}\left( 1-{{\cos }^{2}}\dfrac{\alpha +\beta }{2} \right)}{{{\sin }^{2}}\left( \dfrac{\alpha -\beta }{2} \right)} \\
& {{\sin }^{2}}\dfrac{\alpha -\beta }{2}=\dfrac{{{a}^{2}}}{{{x}_{_{1}}}^{2}}\left( 1-\dfrac{{{a}^{2}}{{y}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \right) \\
& {{\sin }^{2}}\dfrac{\alpha -\beta }{2}=\dfrac{{{a}^{2}}}{{{x}_{_{1}}}^{2}}\left( \dfrac{{{b}^{2}}{{x}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \right) \\
& {{\sin }^{2}}\dfrac{\alpha -\beta }{2}=\dfrac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \\
& Or\text{ }1-{{\cos }^{2}}\dfrac{\alpha -\beta }{2}=\dfrac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \\
& {{\cos }^{2}}\dfrac{\alpha -\beta }{2}=\dfrac{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}-{{a}^{2}}{{b}^{2}}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}}...........\left( x \right) \\
\end{align}$
Putting values of ${{\cos }^{2}}\dfrac{\alpha +\beta }{2},{{\cos }^{2}}\dfrac{\alpha -\beta }{2}$from equation (ix) and (x) in equation (viii), we get;
$\begin{align}
& \dfrac{{{a}^{2}}\left( \dfrac{{{a}^{2}}{{y}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \right)}{\left( \dfrac{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}-{{a}^{2}}{{b}^{2}}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \right)}={{h}^{2}} \\
& \dfrac{{{a}^{4}}{{y}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}-{{a}^{2}}{{b}^{2}}}={{h}^{2}} \\
& \dfrac{{{a}^{4}}{{y}_{1}}^{2}}{{{h}^{2}}}={{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}-{{a}^{2}}{{b}^{2}} \\
& {{a}^{2}}{{b}^{2}}={{y}_{1}}^{2}\left( {{a}^{2}}-\dfrac{{{a}^{2}}}{{{h}^{2}}} \right)+{{b}^{2}}{{x}_{1}}^{2} \\
\end{align}$
Dividing both sides by ${{a}^{2}}{{b}^{2}}$, we get;
$1=\dfrac{{{y}_{1}}^{2}}{{{b}^{2}}}\left( 1-\dfrac{{{a}^{2}}}{{{h}^{2}}} \right)+\dfrac{{{x}_{1}}^{2}}{{{a}^{2}}}$
Replacing $\left( {{x}_{1}},{{y}_{1}} \right)$ by $\left( x,y \right)$ to get the required locus, we get;
$\dfrac{{{x}_{1}}^{2}}{{{a}^{2}}}+\dfrac{{{y}_{1}}^{2}}{{{b}^{2}}}\left( 1-\dfrac{{{a}^{2}}}{{{h}^{2}}} \right)=1$
Hence, proved.
Note: One can calculate intersection of tangent $PA$ and $AS$ to get point $A$ where point $P\text{ and }S$ has parametric coordinates as $\left( a\cos \alpha ,b\sin \alpha \right),\left( a\cos \left( \pi +\beta \right),b\sin \left( \pi +\beta \right) \right)$. Solution will be the same. Calculation is the important part of these kinds of questions.
One can use a substitution and elimination approach to find intersecting points of tangents but that will be a longer process than cross – multiplication which gives $\left( x,y \right)$ in one line.
By symmetry of ellipse points $\left( P,R \right)\text{ and }\left( Q,S \right)$ will be opposite to each other at a difference of $180{}^\circ $ eccentric angle which is the key point of this question..
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE