
A parallelogram circumscribes the ellipse and two of its opposite angular points lie on the straight lines ${{x}^{2}}={{h}^{2}}$ ; prove that the locus of the other two is the conic
$\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}\left( 1-\dfrac{{{a}^{2}}}{{{h}^{2}}} \right)=1$.
Answer
608.4k+ views
Hint: Find vertices of parallelogram by intersection of tangents (sides of parallelogram) using parametric coordinates of point of contacts.
We have ellipse given;
$\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1................\left( i \right)$
As, given in question, two of the angular points of parallelogram is lying on ${{x}^{2}}={{h}^{2}}$.
$ABCD$is a parallelogram.
Let $AB,BC,CD,DA$ is touching ellipse at points $P,Q,R,S$ respectively. In other language, we can say that two tangents are drawn from points $P\text{ and }S,$ two tangents are from $P\text{ and }Q,$ two from $Q\text{ and }R;$ similarly, two tangents from $R\text{ and }S,$ which are intersecting at $A,B,C\And D$ respectively.
Let two points which are lying on ${{x}^{2}}={{h}^{2}}$are $B$and $D$.
Let point $P\text{ and }Q$ is $\left( a\cos \alpha ,b\sin \alpha \right)$ and $\left( a\cos \beta ,b\sin \beta \right)$ as parametric coordinates on ellipse $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1.$
We know that tangent from any point $\left( {{x}_{1}},{{y}_{1}} \right)$ on ellipse is;
$T=0$
Or $\dfrac{x{{x}_{1}}}{{{a}_{2}}}+\dfrac{y{{y}_{1}}}{{{b}_{2}}}=1$
Hence, tangents through $P\left( a\cos \alpha ,b\sin \alpha \right)$ and $Q\left( a\cos \beta ,b\sin \beta \right)$;
$\dfrac{x\cos \alpha }{a}+\dfrac{y\sin \alpha }{b}=1\left( PB \right).............\left( ii \right)$
$\dfrac{x\cos \beta }{a}+\dfrac{y\sin \beta }{b}=1\left( BQ \right).............\left( iii \right)$
Let us find intersecting point of equation (ii) and (iii);
By cross multiplication method from equation (ii) and (iii);
$\begin{align}
& \dfrac{x}{\dfrac{\sin \alpha }{b}-\dfrac{\sin \beta }{b}}=\dfrac{-y}{\dfrac{\cos \alpha }{a}-\dfrac{\cos \beta }{a}}=\dfrac{-1}{\dfrac{\cos \alpha }{a}\dfrac{\sin \beta }{b}-\dfrac{\sin \alpha \cos \beta }{ab}} \\
& \dfrac{bx}{\left( \sin \alpha -\sin \beta \right)}=\dfrac{-ay}{\cos \alpha -\cos \beta }=\dfrac{-ab}{\cos \alpha \sin \beta -\sin \alpha \cos \beta } \\
\end{align}$
Simplifying the above relation to get $x$ and $y$
$x=\dfrac{a\left( \sin \alpha -\sin \beta \right)}{\sin \alpha \cos \beta -\cos \alpha \sin \beta },y=\dfrac{-b\left( \cos \alpha -\cos \beta \right)}{\sin \alpha \cos \beta -\cos \alpha \sin \beta }$
We have;
$\begin{align}
& \sin C-\sin D=2\sin \dfrac{C-D}{2}\cos \dfrac{C+D}{2} \\
& \cos C-\cos D=-2\sin \dfrac{C-D}{2}\sin \dfrac{C+D}{2} \\
& \sin C\cos D-\cos C\sin D=\sin \left( C-D \right) \\
\end{align}$
Therefore, we can rewrite $x$ and $y$as;
$x=\dfrac{2a\sin \left( \dfrac{\alpha -\beta }{2} \right)\cos \left( \dfrac{\alpha +\beta }{2} \right)}{\sin \left( \alpha -\beta \right)},y=\dfrac{2b\sin \dfrac{\alpha -\beta }{2}\sin \dfrac{\alpha +\beta }{2}}{-\sin \left( \alpha -\beta \right)}$
We have;
\[\begin{align}
& \sin 2\theta =2\sin \theta \cos \theta \\
& x=\dfrac{2a\sin \left( \dfrac{\alpha -\beta }{2} \right)\cos \left( \dfrac{\alpha +\beta }{2} \right)}{2\sin \left( \dfrac{\alpha -\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)}=\dfrac{a\cos \left( \dfrac{\alpha +\beta }{2} \right)}{\cos \left( \dfrac{\alpha -\beta }{2} \right)} \\
& y=\dfrac{2b\sin \left( \dfrac{\alpha -\beta }{2} \right)\sin \left( \dfrac{\alpha +\beta }{2} \right)}{2\sin \left( \dfrac{\alpha -\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)}=\dfrac{b\sin \left( \dfrac{\alpha +\beta }{2} \right)}{\cos \left( \dfrac{\alpha -\beta }{2} \right)} \\
& \left( x,y \right)=\left( \dfrac{a\cos \left( \dfrac{\alpha +\beta }{2} \right)}{\cos \left( \dfrac{\alpha -\beta }{2} \right)},\dfrac{b\sin \left( \dfrac{\alpha +\beta }{2} \right)}{\cos \left( \dfrac{\alpha -\beta }{2} \right)} \right)..........\left( iv \right) \\
\end{align}\]
Calculated $\left( x,y \right)$ in equation (iv) will lie on ${{x}^{2}}={{h}^{2}}$which is intersection of $PB$ and $BQ$ .
Let us find out points $A$ or $C$ of which we need to find locus.
Let us find out the intersection of $QC$ and $RC$ which is point $C$. Let's coordinate the point $C$ is $\left( {{x}_{_{1}}},{{y}_{1}} \right)$.
The parametric coordinate of point $Q$ is $\left( a\cos \beta ,b\sin \beta \right)$.
Now, by symmetry point $P$ and $R$ will lie exactly opposite to other as shown below;
Hence, parametric coordinate of point $R$is $a\cos \left( \pi +\alpha \right),b\sin \left( \pi +\alpha \right)\text{ or }-a\cos \alpha ,-b\sin \alpha .$
Now, let us write equation of tangents passing through $C$ i.e., $RC$ and $QC$ ;
$\begin{align}
& T=0 \\
& \dfrac{-xa\cos \alpha }{{{a}^{2}}}\dfrac{-yb\sin \alpha }{{{b}^{2}}}=1 \\
& \dfrac{x\cos \alpha }{a}+\dfrac{y\sin \alpha }{b}+1=0.............\left( v \right) \\
\end{align}$
Another tangent through $Q$ is;
$\dfrac{x\cos \beta }{a}+\dfrac{y\sin \beta }{b}-1=0.............\left( vi \right)$
Let us find out intersection of above two equations by cross multiplication method:
$\begin{align}
& \dfrac{x}{\dfrac{-\sin \alpha }{b}-\dfrac{\sin \beta }{b}}=\dfrac{-y}{\dfrac{-\cos \alpha }{a}-\dfrac{\cos \beta }{a}}=\dfrac{1}{\dfrac{\cos \alpha }{a}\dfrac{\sin \beta }{b}-\dfrac{\sin \alpha }{b}\dfrac{\cos \beta }{a}} \\
& \dfrac{-bx}{\sin \alpha +\sin \beta }=\dfrac{ay}{\cos \alpha +\cos \beta }=\dfrac{ab}{\cos \alpha \sin \beta -\sin \alpha \cos \beta } \\
\end{align}$
Now, we can write values of $x$ and $y$ as;
$\begin{align}
& x=\dfrac{a\left( \sin \alpha +\cos \beta \right)}{\sin \alpha \cos \beta -\cos \alpha \sin \beta } \\
& y=\dfrac{b\left( \cos \alpha +\cos \beta \right)}{\cos \alpha \sin \beta -\sin \alpha \cos \beta } \\
\end{align}$
We have,
$\begin{align}
& \sin C+\sin D=2\sin \dfrac{C+D}{2}\cos \dfrac{C-D}{2} \\
& \cos C+\cos D=-2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2} \\
& \sin C\cos D-\cos C\sin D=\sin \left( C-D \right) \\
\end{align}$
Therefore, we can write $x$ and $y$ as;
$x=\dfrac{2a\sin \dfrac{\alpha +\beta }{2}\cos \dfrac{\alpha -\beta }{2}}{\sin \left( \alpha -\beta \right)}$
$\begin{align}
& x=\dfrac{2a\sin \dfrac{\alpha +\beta }{2}\cos \dfrac{\alpha -\beta }{2}}{2\sin \dfrac{\alpha -\beta }{2}\cos \dfrac{\alpha -\beta }{2}} \\
& x=\dfrac{a\sin \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}} \\
\end{align}$
And,
$\begin{align}
& y=\dfrac{2b\cos \dfrac{\alpha +\beta }{2}\cos \dfrac{\alpha -\beta }{2}}{\sin \left( \beta -\alpha \right)} \\
& y=\dfrac{2b\cos \dfrac{\alpha +\beta }{2}\cos \dfrac{\alpha -\beta }{2}}{-2\sin \dfrac{\alpha -\beta }{2}\cos \dfrac{\alpha -\beta }{2}} \\
& y=\dfrac{-b\cos \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}} \\
\end{align}$
Now, we have point $C\left( {{x}_{_{1}}},{{y}_{1}} \right)$as;
$\left( {{x}_{_{1}}},{{y}_{1}} \right)=\left( \dfrac{a\sin \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}},\dfrac{-b\cos \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}} \right).............\left( vii \right)$
As we have point $B(x,y)$ calculated in equation (iv) and will satisfy equation ${{x}^{2}}={{h}^{2}}$. Putting value of $x$ from equation (iv) to ${{x}^{2}}={{h}^{2}}$, we get;
$\dfrac{{{a}^{2}}{{\cos }^{2}}\dfrac{\alpha +\beta }{2}}{{{\cos }^{2}}\dfrac{\alpha -\beta }{2}}={{h}^{2}}...........\left( viii \right)$
Now, let us find out values of ${{\cos }^{2}}\dfrac{\alpha +\beta }{2}$,${{\cos }^{2}}\dfrac{\alpha -\beta }{2}$from equation (vii) in terms of ${{x}_{1}}\text{ and }{{y}_{1}}$, as;
${{x}_{_{1}}}=\dfrac{a\sin \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}},{{y}_{1}}=\dfrac{-b\cos \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}}$
Dividing ${{x}_{1}}\text{ and }{{y}_{1}}$, we get;
$\left( \dfrac{{{x}_{1}}}{{{y}_{1}}} \right)=\dfrac{-a}{b}\tan \left( \dfrac{\alpha +\beta }{2} \right)$
Squaring both sides, we get;
\[\left( \dfrac{{{x}_{1}}^{2}}{{{y}_{1}}^{2}} \right)=\dfrac{{{a}^{2}}}{{{b}^{2}}}{{\tan }^{2}}\left( \dfrac{\alpha +\beta }{2} \right)\]
We have relation $1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $ or${{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1,$using it in above equation, we get;
\[\begin{align}
& \dfrac{{{b}^{2}}{{x}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}}={{\sec }^{2}}\dfrac{\alpha +\beta }{2}-1 \\
& {{\sec }^{2}}\dfrac{\alpha +\beta }{2}=1+\dfrac{{{b}^{2}}{{x}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}} \\
& {{\sec }^{2}}\dfrac{\alpha +\beta }{2}=\dfrac{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}} \\
& Or\text{ co}{{\text{s}}^{2}}\dfrac{\alpha +\beta }{2}=\dfrac{{{a}^{2}}{{y}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}}............\left( ix \right) \\
\end{align}\]
Now, let us calculate square of ${{x}_{1}}$;
${{x}_{_{1}}}^{2}=\dfrac{{{a}^{2}}{{\sin }^{2}}\dfrac{\alpha +\beta }{2}}{{{\sin }^{2}}\left( \dfrac{\alpha -\beta }{2} \right)}$
We have${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$; Hence;
$\begin{align}
& {{x}_{_{1}}}^{2}=\dfrac{{{a}^{2}}\left( 1-{{\cos }^{2}}\dfrac{\alpha +\beta }{2} \right)}{{{\sin }^{2}}\left( \dfrac{\alpha -\beta }{2} \right)} \\
& {{\sin }^{2}}\dfrac{\alpha -\beta }{2}=\dfrac{{{a}^{2}}}{{{x}_{_{1}}}^{2}}\left( 1-\dfrac{{{a}^{2}}{{y}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \right) \\
& {{\sin }^{2}}\dfrac{\alpha -\beta }{2}=\dfrac{{{a}^{2}}}{{{x}_{_{1}}}^{2}}\left( \dfrac{{{b}^{2}}{{x}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \right) \\
& {{\sin }^{2}}\dfrac{\alpha -\beta }{2}=\dfrac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \\
& Or\text{ }1-{{\cos }^{2}}\dfrac{\alpha -\beta }{2}=\dfrac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \\
& {{\cos }^{2}}\dfrac{\alpha -\beta }{2}=\dfrac{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}-{{a}^{2}}{{b}^{2}}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}}...........\left( x \right) \\
\end{align}$
Putting values of ${{\cos }^{2}}\dfrac{\alpha +\beta }{2},{{\cos }^{2}}\dfrac{\alpha -\beta }{2}$from equation (ix) and (x) in equation (viii), we get;
$\begin{align}
& \dfrac{{{a}^{2}}\left( \dfrac{{{a}^{2}}{{y}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \right)}{\left( \dfrac{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}-{{a}^{2}}{{b}^{2}}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \right)}={{h}^{2}} \\
& \dfrac{{{a}^{4}}{{y}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}-{{a}^{2}}{{b}^{2}}}={{h}^{2}} \\
& \dfrac{{{a}^{4}}{{y}_{1}}^{2}}{{{h}^{2}}}={{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}-{{a}^{2}}{{b}^{2}} \\
& {{a}^{2}}{{b}^{2}}={{y}_{1}}^{2}\left( {{a}^{2}}-\dfrac{{{a}^{2}}}{{{h}^{2}}} \right)+{{b}^{2}}{{x}_{1}}^{2} \\
\end{align}$
Dividing both sides by ${{a}^{2}}{{b}^{2}}$, we get;
$1=\dfrac{{{y}_{1}}^{2}}{{{b}^{2}}}\left( 1-\dfrac{{{a}^{2}}}{{{h}^{2}}} \right)+\dfrac{{{x}_{1}}^{2}}{{{a}^{2}}}$
Replacing $\left( {{x}_{1}},{{y}_{1}} \right)$ by $\left( x,y \right)$ to get the required locus, we get;
$\dfrac{{{x}_{1}}^{2}}{{{a}^{2}}}+\dfrac{{{y}_{1}}^{2}}{{{b}^{2}}}\left( 1-\dfrac{{{a}^{2}}}{{{h}^{2}}} \right)=1$
Hence, proved.
Note: One can calculate intersection of tangent $PA$ and $AS$ to get point $A$ where point $P\text{ and }S$ has parametric coordinates as $\left( a\cos \alpha ,b\sin \alpha \right),\left( a\cos \left( \pi +\beta \right),b\sin \left( \pi +\beta \right) \right)$. Solution will be the same. Calculation is the important part of these kinds of questions.
One can use a substitution and elimination approach to find intersecting points of tangents but that will be a longer process than cross – multiplication which gives $\left( x,y \right)$ in one line.
By symmetry of ellipse points $\left( P,R \right)\text{ and }\left( Q,S \right)$ will be opposite to each other at a difference of $180{}^\circ $ eccentric angle which is the key point of this question..
We have ellipse given;
$\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1................\left( i \right)$
As, given in question, two of the angular points of parallelogram is lying on ${{x}^{2}}={{h}^{2}}$.
$ABCD$is a parallelogram.
Let $AB,BC,CD,DA$ is touching ellipse at points $P,Q,R,S$ respectively. In other language, we can say that two tangents are drawn from points $P\text{ and }S,$ two tangents are from $P\text{ and }Q,$ two from $Q\text{ and }R;$ similarly, two tangents from $R\text{ and }S,$ which are intersecting at $A,B,C\And D$ respectively.
Let two points which are lying on ${{x}^{2}}={{h}^{2}}$are $B$and $D$.
Let point $P\text{ and }Q$ is $\left( a\cos \alpha ,b\sin \alpha \right)$ and $\left( a\cos \beta ,b\sin \beta \right)$ as parametric coordinates on ellipse $\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1.$
We know that tangent from any point $\left( {{x}_{1}},{{y}_{1}} \right)$ on ellipse is;
$T=0$
Or $\dfrac{x{{x}_{1}}}{{{a}_{2}}}+\dfrac{y{{y}_{1}}}{{{b}_{2}}}=1$
Hence, tangents through $P\left( a\cos \alpha ,b\sin \alpha \right)$ and $Q\left( a\cos \beta ,b\sin \beta \right)$;
$\dfrac{x\cos \alpha }{a}+\dfrac{y\sin \alpha }{b}=1\left( PB \right).............\left( ii \right)$
$\dfrac{x\cos \beta }{a}+\dfrac{y\sin \beta }{b}=1\left( BQ \right).............\left( iii \right)$
Let us find intersecting point of equation (ii) and (iii);
By cross multiplication method from equation (ii) and (iii);
$\begin{align}
& \dfrac{x}{\dfrac{\sin \alpha }{b}-\dfrac{\sin \beta }{b}}=\dfrac{-y}{\dfrac{\cos \alpha }{a}-\dfrac{\cos \beta }{a}}=\dfrac{-1}{\dfrac{\cos \alpha }{a}\dfrac{\sin \beta }{b}-\dfrac{\sin \alpha \cos \beta }{ab}} \\
& \dfrac{bx}{\left( \sin \alpha -\sin \beta \right)}=\dfrac{-ay}{\cos \alpha -\cos \beta }=\dfrac{-ab}{\cos \alpha \sin \beta -\sin \alpha \cos \beta } \\
\end{align}$
Simplifying the above relation to get $x$ and $y$
$x=\dfrac{a\left( \sin \alpha -\sin \beta \right)}{\sin \alpha \cos \beta -\cos \alpha \sin \beta },y=\dfrac{-b\left( \cos \alpha -\cos \beta \right)}{\sin \alpha \cos \beta -\cos \alpha \sin \beta }$
We have;
$\begin{align}
& \sin C-\sin D=2\sin \dfrac{C-D}{2}\cos \dfrac{C+D}{2} \\
& \cos C-\cos D=-2\sin \dfrac{C-D}{2}\sin \dfrac{C+D}{2} \\
& \sin C\cos D-\cos C\sin D=\sin \left( C-D \right) \\
\end{align}$
Therefore, we can rewrite $x$ and $y$as;
$x=\dfrac{2a\sin \left( \dfrac{\alpha -\beta }{2} \right)\cos \left( \dfrac{\alpha +\beta }{2} \right)}{\sin \left( \alpha -\beta \right)},y=\dfrac{2b\sin \dfrac{\alpha -\beta }{2}\sin \dfrac{\alpha +\beta }{2}}{-\sin \left( \alpha -\beta \right)}$
We have;
\[\begin{align}
& \sin 2\theta =2\sin \theta \cos \theta \\
& x=\dfrac{2a\sin \left( \dfrac{\alpha -\beta }{2} \right)\cos \left( \dfrac{\alpha +\beta }{2} \right)}{2\sin \left( \dfrac{\alpha -\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)}=\dfrac{a\cos \left( \dfrac{\alpha +\beta }{2} \right)}{\cos \left( \dfrac{\alpha -\beta }{2} \right)} \\
& y=\dfrac{2b\sin \left( \dfrac{\alpha -\beta }{2} \right)\sin \left( \dfrac{\alpha +\beta }{2} \right)}{2\sin \left( \dfrac{\alpha -\beta }{2} \right)\cos \left( \dfrac{\alpha -\beta }{2} \right)}=\dfrac{b\sin \left( \dfrac{\alpha +\beta }{2} \right)}{\cos \left( \dfrac{\alpha -\beta }{2} \right)} \\
& \left( x,y \right)=\left( \dfrac{a\cos \left( \dfrac{\alpha +\beta }{2} \right)}{\cos \left( \dfrac{\alpha -\beta }{2} \right)},\dfrac{b\sin \left( \dfrac{\alpha +\beta }{2} \right)}{\cos \left( \dfrac{\alpha -\beta }{2} \right)} \right)..........\left( iv \right) \\
\end{align}\]
Calculated $\left( x,y \right)$ in equation (iv) will lie on ${{x}^{2}}={{h}^{2}}$which is intersection of $PB$ and $BQ$ .
Let us find out points $A$ or $C$ of which we need to find locus.
Let us find out the intersection of $QC$ and $RC$ which is point $C$. Let's coordinate the point $C$ is $\left( {{x}_{_{1}}},{{y}_{1}} \right)$.
The parametric coordinate of point $Q$ is $\left( a\cos \beta ,b\sin \beta \right)$.
Now, by symmetry point $P$ and $R$ will lie exactly opposite to other as shown below;
Hence, parametric coordinate of point $R$is $a\cos \left( \pi +\alpha \right),b\sin \left( \pi +\alpha \right)\text{ or }-a\cos \alpha ,-b\sin \alpha .$
Now, let us write equation of tangents passing through $C$ i.e., $RC$ and $QC$ ;
$\begin{align}
& T=0 \\
& \dfrac{-xa\cos \alpha }{{{a}^{2}}}\dfrac{-yb\sin \alpha }{{{b}^{2}}}=1 \\
& \dfrac{x\cos \alpha }{a}+\dfrac{y\sin \alpha }{b}+1=0.............\left( v \right) \\
\end{align}$
Another tangent through $Q$ is;
$\dfrac{x\cos \beta }{a}+\dfrac{y\sin \beta }{b}-1=0.............\left( vi \right)$
Let us find out intersection of above two equations by cross multiplication method:
$\begin{align}
& \dfrac{x}{\dfrac{-\sin \alpha }{b}-\dfrac{\sin \beta }{b}}=\dfrac{-y}{\dfrac{-\cos \alpha }{a}-\dfrac{\cos \beta }{a}}=\dfrac{1}{\dfrac{\cos \alpha }{a}\dfrac{\sin \beta }{b}-\dfrac{\sin \alpha }{b}\dfrac{\cos \beta }{a}} \\
& \dfrac{-bx}{\sin \alpha +\sin \beta }=\dfrac{ay}{\cos \alpha +\cos \beta }=\dfrac{ab}{\cos \alpha \sin \beta -\sin \alpha \cos \beta } \\
\end{align}$
Now, we can write values of $x$ and $y$ as;
$\begin{align}
& x=\dfrac{a\left( \sin \alpha +\cos \beta \right)}{\sin \alpha \cos \beta -\cos \alpha \sin \beta } \\
& y=\dfrac{b\left( \cos \alpha +\cos \beta \right)}{\cos \alpha \sin \beta -\sin \alpha \cos \beta } \\
\end{align}$
We have,
$\begin{align}
& \sin C+\sin D=2\sin \dfrac{C+D}{2}\cos \dfrac{C-D}{2} \\
& \cos C+\cos D=-2\cos \dfrac{C+D}{2}\cos \dfrac{C-D}{2} \\
& \sin C\cos D-\cos C\sin D=\sin \left( C-D \right) \\
\end{align}$
Therefore, we can write $x$ and $y$ as;
$x=\dfrac{2a\sin \dfrac{\alpha +\beta }{2}\cos \dfrac{\alpha -\beta }{2}}{\sin \left( \alpha -\beta \right)}$
$\begin{align}
& x=\dfrac{2a\sin \dfrac{\alpha +\beta }{2}\cos \dfrac{\alpha -\beta }{2}}{2\sin \dfrac{\alpha -\beta }{2}\cos \dfrac{\alpha -\beta }{2}} \\
& x=\dfrac{a\sin \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}} \\
\end{align}$
And,
$\begin{align}
& y=\dfrac{2b\cos \dfrac{\alpha +\beta }{2}\cos \dfrac{\alpha -\beta }{2}}{\sin \left( \beta -\alpha \right)} \\
& y=\dfrac{2b\cos \dfrac{\alpha +\beta }{2}\cos \dfrac{\alpha -\beta }{2}}{-2\sin \dfrac{\alpha -\beta }{2}\cos \dfrac{\alpha -\beta }{2}} \\
& y=\dfrac{-b\cos \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}} \\
\end{align}$
Now, we have point $C\left( {{x}_{_{1}}},{{y}_{1}} \right)$as;
$\left( {{x}_{_{1}}},{{y}_{1}} \right)=\left( \dfrac{a\sin \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}},\dfrac{-b\cos \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}} \right).............\left( vii \right)$
As we have point $B(x,y)$ calculated in equation (iv) and will satisfy equation ${{x}^{2}}={{h}^{2}}$. Putting value of $x$ from equation (iv) to ${{x}^{2}}={{h}^{2}}$, we get;
$\dfrac{{{a}^{2}}{{\cos }^{2}}\dfrac{\alpha +\beta }{2}}{{{\cos }^{2}}\dfrac{\alpha -\beta }{2}}={{h}^{2}}...........\left( viii \right)$
Now, let us find out values of ${{\cos }^{2}}\dfrac{\alpha +\beta }{2}$,${{\cos }^{2}}\dfrac{\alpha -\beta }{2}$from equation (vii) in terms of ${{x}_{1}}\text{ and }{{y}_{1}}$, as;
${{x}_{_{1}}}=\dfrac{a\sin \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}},{{y}_{1}}=\dfrac{-b\cos \dfrac{\alpha +\beta }{2}}{\sin \dfrac{\alpha -\beta }{2}}$
Dividing ${{x}_{1}}\text{ and }{{y}_{1}}$, we get;
$\left( \dfrac{{{x}_{1}}}{{{y}_{1}}} \right)=\dfrac{-a}{b}\tan \left( \dfrac{\alpha +\beta }{2} \right)$
Squaring both sides, we get;
\[\left( \dfrac{{{x}_{1}}^{2}}{{{y}_{1}}^{2}} \right)=\dfrac{{{a}^{2}}}{{{b}^{2}}}{{\tan }^{2}}\left( \dfrac{\alpha +\beta }{2} \right)\]
We have relation $1+{{\tan }^{2}}\theta ={{\sec }^{2}}\theta $ or${{\tan }^{2}}\theta ={{\sec }^{2}}\theta -1,$using it in above equation, we get;
\[\begin{align}
& \dfrac{{{b}^{2}}{{x}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}}={{\sec }^{2}}\dfrac{\alpha +\beta }{2}-1 \\
& {{\sec }^{2}}\dfrac{\alpha +\beta }{2}=1+\dfrac{{{b}^{2}}{{x}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}} \\
& {{\sec }^{2}}\dfrac{\alpha +\beta }{2}=\dfrac{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}} \\
& Or\text{ co}{{\text{s}}^{2}}\dfrac{\alpha +\beta }{2}=\dfrac{{{a}^{2}}{{y}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}}............\left( ix \right) \\
\end{align}\]
Now, let us calculate square of ${{x}_{1}}$;
${{x}_{_{1}}}^{2}=\dfrac{{{a}^{2}}{{\sin }^{2}}\dfrac{\alpha +\beta }{2}}{{{\sin }^{2}}\left( \dfrac{\alpha -\beta }{2} \right)}$
We have${{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1$; Hence;
$\begin{align}
& {{x}_{_{1}}}^{2}=\dfrac{{{a}^{2}}\left( 1-{{\cos }^{2}}\dfrac{\alpha +\beta }{2} \right)}{{{\sin }^{2}}\left( \dfrac{\alpha -\beta }{2} \right)} \\
& {{\sin }^{2}}\dfrac{\alpha -\beta }{2}=\dfrac{{{a}^{2}}}{{{x}_{_{1}}}^{2}}\left( 1-\dfrac{{{a}^{2}}{{y}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \right) \\
& {{\sin }^{2}}\dfrac{\alpha -\beta }{2}=\dfrac{{{a}^{2}}}{{{x}_{_{1}}}^{2}}\left( \dfrac{{{b}^{2}}{{x}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \right) \\
& {{\sin }^{2}}\dfrac{\alpha -\beta }{2}=\dfrac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \\
& Or\text{ }1-{{\cos }^{2}}\dfrac{\alpha -\beta }{2}=\dfrac{{{a}^{2}}{{b}^{2}}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \\
& {{\cos }^{2}}\dfrac{\alpha -\beta }{2}=\dfrac{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}-{{a}^{2}}{{b}^{2}}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}}...........\left( x \right) \\
\end{align}$
Putting values of ${{\cos }^{2}}\dfrac{\alpha +\beta }{2},{{\cos }^{2}}\dfrac{\alpha -\beta }{2}$from equation (ix) and (x) in equation (viii), we get;
$\begin{align}
& \dfrac{{{a}^{2}}\left( \dfrac{{{a}^{2}}{{y}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \right)}{\left( \dfrac{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}-{{a}^{2}}{{b}^{2}}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}} \right)}={{h}^{2}} \\
& \dfrac{{{a}^{4}}{{y}_{1}}^{2}}{{{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}-{{a}^{2}}{{b}^{2}}}={{h}^{2}} \\
& \dfrac{{{a}^{4}}{{y}_{1}}^{2}}{{{h}^{2}}}={{a}^{2}}{{y}_{1}}^{2}+{{b}^{2}}{{x}_{1}}^{2}-{{a}^{2}}{{b}^{2}} \\
& {{a}^{2}}{{b}^{2}}={{y}_{1}}^{2}\left( {{a}^{2}}-\dfrac{{{a}^{2}}}{{{h}^{2}}} \right)+{{b}^{2}}{{x}_{1}}^{2} \\
\end{align}$
Dividing both sides by ${{a}^{2}}{{b}^{2}}$, we get;
$1=\dfrac{{{y}_{1}}^{2}}{{{b}^{2}}}\left( 1-\dfrac{{{a}^{2}}}{{{h}^{2}}} \right)+\dfrac{{{x}_{1}}^{2}}{{{a}^{2}}}$
Replacing $\left( {{x}_{1}},{{y}_{1}} \right)$ by $\left( x,y \right)$ to get the required locus, we get;
$\dfrac{{{x}_{1}}^{2}}{{{a}^{2}}}+\dfrac{{{y}_{1}}^{2}}{{{b}^{2}}}\left( 1-\dfrac{{{a}^{2}}}{{{h}^{2}}} \right)=1$
Hence, proved.
Note: One can calculate intersection of tangent $PA$ and $AS$ to get point $A$ where point $P\text{ and }S$ has parametric coordinates as $\left( a\cos \alpha ,b\sin \alpha \right),\left( a\cos \left( \pi +\beta \right),b\sin \left( \pi +\beta \right) \right)$. Solution will be the same. Calculation is the important part of these kinds of questions.
One can use a substitution and elimination approach to find intersecting points of tangents but that will be a longer process than cross – multiplication which gives $\left( x,y \right)$ in one line.
By symmetry of ellipse points $\left( P,R \right)\text{ and }\left( Q,S \right)$ will be opposite to each other at a difference of $180{}^\circ $ eccentric angle which is the key point of this question..
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

