Answer
Verified
427.8k+ views
Hint: We need to find the velocity of the parachutist after the free fall period. Use this velocity as initial velocity for retardation period.
Formula used: In this solution we will be using the following formulae;
\[v = u + at\] where \[v\] is the final velocity of the body accelerating uniformly, \[u\] is the initial velocity, \[a\] is the value of the acceleration and \[t\] is the time elapsed.
\[s = ut + \dfrac{1}{2}a{t^2}\] where \[s\] is the distance covered by an accelerating body.
\[{v^2} = {u^2} + 2as\] where all variables are the same as defined above.
Complete Step-by-Step solution:
During the period where the parachutist was in free fall, he accelerates downward with an acceleration due to gravity. We can calculate the velocity of the parachutist after the 10 sec of free fall using
\[v = u + at\] where \[v\] is the final velocity of the body accelerating uniformly, \[u\] is the initial velocity, \[a\] is the value of the acceleration and \[t\] is the time elapsed.
Hence,
\[v = 0 + \left( {10} \right)\left( {10} \right) = 100m{s^{ - 1}}\] (since \[a = g = 10m{s^{ - 2}}\])
The distance covered within this same time period can be given using
\[s = ut + \dfrac{1}{2}a{t^2}\] where \[s\] is the distance covered by an accelerating body.
Hence,
\[s = 0 + \dfrac{1}{2}\left( {10} \right){\left( {10} \right)^2} = 500m\]
Hence, the distance to the ground after the free fall, is
\[{s_r} = s - 500 = 2495 - 500 = 1995m\]
Now for the velocity on reaching the ground we can use the formula
\[{v^2} = {u^2} + 2as\]
Hence by inserting known values, we have
\[{v^2} = {\left( {100} \right)^2} + 2\left( { - 2.5} \right)\left( {1995} \right)\]
By computation, we have
\[ \Rightarrow v = 5m/s\]
Hence, the correct option is A
Note: For clarity, the acceleration in the equation is negative because after the parachute was opened, the parachutist was in retardation, which is negative acceleration. Sometimes, the equation of motion can be written as
\[{v^2} = {u^2} \pm 2as\] where the \[ + \] is used for acceleration, and \[ - \] is used for deceleration or retardation. In this case, the \[a\] will always possess a positive value.
Formula used: In this solution we will be using the following formulae;
\[v = u + at\] where \[v\] is the final velocity of the body accelerating uniformly, \[u\] is the initial velocity, \[a\] is the value of the acceleration and \[t\] is the time elapsed.
\[s = ut + \dfrac{1}{2}a{t^2}\] where \[s\] is the distance covered by an accelerating body.
\[{v^2} = {u^2} + 2as\] where all variables are the same as defined above.
Complete Step-by-Step solution:
During the period where the parachutist was in free fall, he accelerates downward with an acceleration due to gravity. We can calculate the velocity of the parachutist after the 10 sec of free fall using
\[v = u + at\] where \[v\] is the final velocity of the body accelerating uniformly, \[u\] is the initial velocity, \[a\] is the value of the acceleration and \[t\] is the time elapsed.
Hence,
\[v = 0 + \left( {10} \right)\left( {10} \right) = 100m{s^{ - 1}}\] (since \[a = g = 10m{s^{ - 2}}\])
The distance covered within this same time period can be given using
\[s = ut + \dfrac{1}{2}a{t^2}\] where \[s\] is the distance covered by an accelerating body.
Hence,
\[s = 0 + \dfrac{1}{2}\left( {10} \right){\left( {10} \right)^2} = 500m\]
Hence, the distance to the ground after the free fall, is
\[{s_r} = s - 500 = 2495 - 500 = 1995m\]
Now for the velocity on reaching the ground we can use the formula
\[{v^2} = {u^2} + 2as\]
Hence by inserting known values, we have
\[{v^2} = {\left( {100} \right)^2} + 2\left( { - 2.5} \right)\left( {1995} \right)\]
By computation, we have
\[ \Rightarrow v = 5m/s\]
Hence, the correct option is A
Note: For clarity, the acceleration in the equation is negative because after the parachute was opened, the parachutist was in retardation, which is negative acceleration. Sometimes, the equation of motion can be written as
\[{v^2} = {u^2} \pm 2as\] where the \[ + \] is used for acceleration, and \[ - \] is used for deceleration or retardation. In this case, the \[a\] will always possess a positive value.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it