Answer
Verified
488.1k+ views
Hint: Let the number be n. Use Euclid's division lemma with a = n and b = 143. Write 31 as 26+5 and take 13 common from the first two terms. Hence find the remainder obtained on dividing by 13.
Alternatively, you can use the property that if $a\equiv b\bmod m$ and n divides m then $a\equiv b\bmod n$.
Use the fact that if $a\equiv b\bmod m$ thenn$a\equiv b-cm\bmod m$, where c is an integer.
Hence find the remainder on dividing by 13.
Complete step-by-step answer:
We know from Euclid's division lemma if r is the remainder on dividing a by b then
a = bq+r.
Let n be the given number.
Hence n = 143q+31
Hence n = 143q+26+5
Taking 13 common from the first two terms, we get
n = 13(11q+2) +5
i.e. n = 13s+5 where s is an integer.
Since $0\le 5<13$we have
The remainder on dividing n by 13 is 5.
Hence option [d] is correct.
Note: Let n be the given number.
Hence $n\equiv 31\bmod 143$
We know that if $a\equiv b\bmod m$ and n divides m then $a\equiv b\bmod n$.
Since 13 divides 143, using the above property, we get
$\begin{align}
& n\equiv 31\bmod 13 \\
& \Rightarrow n\equiv 5\bmod 13 \\
\end{align}$
Hence the remainder obtained on dividing the number by 13 is 5.
Hence option [d] is correct.
Alternatively, you can use the property that if $a\equiv b\bmod m$ and n divides m then $a\equiv b\bmod n$.
Use the fact that if $a\equiv b\bmod m$ thenn$a\equiv b-cm\bmod m$, where c is an integer.
Hence find the remainder on dividing by 13.
Complete step-by-step answer:
We know from Euclid's division lemma if r is the remainder on dividing a by b then
a = bq+r.
Let n be the given number.
Hence n = 143q+31
Hence n = 143q+26+5
Taking 13 common from the first two terms, we get
n = 13(11q+2) +5
i.e. n = 13s+5 where s is an integer.
Since $0\le 5<13$we have
The remainder on dividing n by 13 is 5.
Hence option [d] is correct.
Note: Let n be the given number.
Hence $n\equiv 31\bmod 143$
We know that if $a\equiv b\bmod m$ and n divides m then $a\equiv b\bmod n$.
Since 13 divides 143, using the above property, we get
$\begin{align}
& n\equiv 31\bmod 13 \\
& \Rightarrow n\equiv 5\bmod 13 \\
\end{align}$
Hence the remainder obtained on dividing the number by 13 is 5.
Hence option [d] is correct.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE