
A number when divided by 143 leaves remainder 31. The remainder when the number is divided by 13 is
[a] 0
[b] 1
[c] 3
[d] 5
Answer
607.5k+ views
Hint: Let the number be n. Use Euclid's division lemma with a = n and b = 143. Write 31 as 26+5 and take 13 common from the first two terms. Hence find the remainder obtained on dividing by 13.
Alternatively, you can use the property that if $a\equiv b\bmod m$ and n divides m then $a\equiv b\bmod n$.
Use the fact that if $a\equiv b\bmod m$ thenn$a\equiv b-cm\bmod m$, where c is an integer.
Hence find the remainder on dividing by 13.
Complete step-by-step answer:
We know from Euclid's division lemma if r is the remainder on dividing a by b then
a = bq+r.
Let n be the given number.
Hence n = 143q+31
Hence n = 143q+26+5
Taking 13 common from the first two terms, we get
n = 13(11q+2) +5
i.e. n = 13s+5 where s is an integer.
Since $0\le 5<13$we have
The remainder on dividing n by 13 is 5.
Hence option [d] is correct.
Note: Let n be the given number.
Hence $n\equiv 31\bmod 143$
We know that if $a\equiv b\bmod m$ and n divides m then $a\equiv b\bmod n$.
Since 13 divides 143, using the above property, we get
$\begin{align}
& n\equiv 31\bmod 13 \\
& \Rightarrow n\equiv 5\bmod 13 \\
\end{align}$
Hence the remainder obtained on dividing the number by 13 is 5.
Hence option [d] is correct.
Alternatively, you can use the property that if $a\equiv b\bmod m$ and n divides m then $a\equiv b\bmod n$.
Use the fact that if $a\equiv b\bmod m$ thenn$a\equiv b-cm\bmod m$, where c is an integer.
Hence find the remainder on dividing by 13.
Complete step-by-step answer:
We know from Euclid's division lemma if r is the remainder on dividing a by b then
a = bq+r.
Let n be the given number.
Hence n = 143q+31
Hence n = 143q+26+5
Taking 13 common from the first two terms, we get
n = 13(11q+2) +5
i.e. n = 13s+5 where s is an integer.
Since $0\le 5<13$we have
The remainder on dividing n by 13 is 5.
Hence option [d] is correct.
Note: Let n be the given number.
Hence $n\equiv 31\bmod 143$
We know that if $a\equiv b\bmod m$ and n divides m then $a\equiv b\bmod n$.
Since 13 divides 143, using the above property, we get
$\begin{align}
& n\equiv 31\bmod 13 \\
& \Rightarrow n\equiv 5\bmod 13 \\
\end{align}$
Hence the remainder obtained on dividing the number by 13 is 5.
Hence option [d] is correct.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who among the following opened first school for girls class 9 social science CBSE

What does the word meridian mean A New day B Midday class 9 social science CBSE

What is the full form of pH?

Write the 6 fundamental rights of India and explain in detail

Which places in India experience sunrise first and class 9 social science CBSE

