Answer
Verified
490.5k+ views
Hint: In downstream, the boat goes with the water-flow so we add both the speeds of boat and water and in upstream, boat goes against the direction of water-flow so we subtract both the speeds. Then we use the formula for speed to find the answer.
Complete step-by-step answer:
Let the speed of the stream be x$\dfrac{{{\text{km}}}}{{{\text{hr}}}}$.
Then,
Speed downstream = (15 + x) $\dfrac{{{\text{km}}}}{{{\text{hr}}}}$
Since the still water is going downstream. The speeds add up.
Speed upstream = (15 - x) $\dfrac{{{\text{km}}}}{{{\text{hr}}}}$
Since the still water is going downstream. The speeds are subtracted.
Speed = $\dfrac{{{\text{total distance covered}}}}{{{\text{total time taken}}}}$
Total time = $\dfrac{{{\text{total distance covered}}}}{{{\text{speed}}}}$
Given distance d = 30km
Total time t = 4$\dfrac{1}{2}$hours
Total time = Time take to travel downstream + Time taken to travel upstream
⟹$\dfrac{{30}}{{{\text{15 + x}}}} + \dfrac{{30}}{{{\text{15 - x}}}} = 4\dfrac{1}{2}$
$
\Rightarrow \dfrac{{\left[ {30\left( {15 - {\text{x}}} \right) + 30\left( {{\text{15 + x}}} \right)} \right]}}{{\left( {{\text{15 + x}}} \right)\left( {{\text{15 - x}}} \right)}} = \dfrac{9}{2} \\
\Rightarrow \dfrac{{\left[ {450 - 30{\text{x + 450 + }}30{\text{x}}} \right]}}{{225 + 15{\text{x - 15x - }}{{\text{x}}^2}}} = \dfrac{9}{2} \\
$
$
\Rightarrow \dfrac{{900}}{{225 - {{\text{x}}^2}}} = \dfrac{9}{2} \\
\Rightarrow \dfrac{{100}}{{225 - {{\text{x}}^2}}} = \dfrac{1}{2} \\
\Rightarrow 200 = 225 - {\text{ }}{{\text{x}}^2} \\
\Rightarrow {{\text{x}}^2} = 25 \\
\Rightarrow {\text{x = 5}}\dfrac{{{\text{km}}}}{{{\text{hr}}}} \\
$
Hence, the speed of the stream is 5$\dfrac{{{\text{km}}}}{{{\text{hr}}}}$.
Note: In order to solve this type of questions the key is to identify that in downstream both the speeds are added up and when in upstream both the speeds are subtracted. Using the formula for speed is the next step we proceed with. Then we equate the total time and individual times taken to calculate the answer.
Complete step-by-step answer:
Let the speed of the stream be x$\dfrac{{{\text{km}}}}{{{\text{hr}}}}$.
Then,
Speed downstream = (15 + x) $\dfrac{{{\text{km}}}}{{{\text{hr}}}}$
Since the still water is going downstream. The speeds add up.
Speed upstream = (15 - x) $\dfrac{{{\text{km}}}}{{{\text{hr}}}}$
Since the still water is going downstream. The speeds are subtracted.
Speed = $\dfrac{{{\text{total distance covered}}}}{{{\text{total time taken}}}}$
Total time = $\dfrac{{{\text{total distance covered}}}}{{{\text{speed}}}}$
Given distance d = 30km
Total time t = 4$\dfrac{1}{2}$hours
Total time = Time take to travel downstream + Time taken to travel upstream
⟹$\dfrac{{30}}{{{\text{15 + x}}}} + \dfrac{{30}}{{{\text{15 - x}}}} = 4\dfrac{1}{2}$
$
\Rightarrow \dfrac{{\left[ {30\left( {15 - {\text{x}}} \right) + 30\left( {{\text{15 + x}}} \right)} \right]}}{{\left( {{\text{15 + x}}} \right)\left( {{\text{15 - x}}} \right)}} = \dfrac{9}{2} \\
\Rightarrow \dfrac{{\left[ {450 - 30{\text{x + 450 + }}30{\text{x}}} \right]}}{{225 + 15{\text{x - 15x - }}{{\text{x}}^2}}} = \dfrac{9}{2} \\
$
$
\Rightarrow \dfrac{{900}}{{225 - {{\text{x}}^2}}} = \dfrac{9}{2} \\
\Rightarrow \dfrac{{100}}{{225 - {{\text{x}}^2}}} = \dfrac{1}{2} \\
\Rightarrow 200 = 225 - {\text{ }}{{\text{x}}^2} \\
\Rightarrow {{\text{x}}^2} = 25 \\
\Rightarrow {\text{x = 5}}\dfrac{{{\text{km}}}}{{{\text{hr}}}} \\
$
Hence, the speed of the stream is 5$\dfrac{{{\text{km}}}}{{{\text{hr}}}}$.
Note: In order to solve this type of questions the key is to identify that in downstream both the speeds are added up and when in upstream both the speeds are subtracted. Using the formula for speed is the next step we proceed with. Then we equate the total time and individual times taken to calculate the answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE