
A mixture of $1.65\times {{10}^{21}}$ molecules of X and $1.85\times {{10}^{21}}$ molecules of Y weighs 0.688g. If the molecular mass of Y is 187, what is the molecular mass of X?
(A)- 41.35
(B)- 42.35
(C)- 41.65
(D)- 41.75
Answer
583.8k+ views
Hint: Calculate the mass of molecules of Y present in the mixture. Eliminating the mass of molecules of Y from the total mass of the mixture will give us the mass of all the molecules of X in the mixture.
Complete answer:
Let us see what we have been given.
Number of molecules of X in the mixture = $1.65\times {{10}^{21}}$
Number of molecules of Y in the mixture = $1.85\times {{10}^{21}}$
Total mass of the mixture = 0.688g
Molecular mass of Y= 187
Molecular mass of Y is equal to the mean mass of one molecule of Y which is 187 (in atomic mass unit).
We know that one mole of a substance contains $6.022\times {{10}^{23}}$ molecules.
Therefore, one mole of Y contains $6.022\times {{10}^{23}}$ molecules and the mass of one mole of Y (in grams) is equal to the average or mean mass of one molecule of Y (in amu), i.e. 187.
Hence, we can write that
Mass of $6.022\times {{10}^{23}}$ molecules of Y = 187g
Then, we can say that the mass of $1.85\times {{10}^{21}}$ molecules of Y = $\dfrac{187g}{6.022\times {{10}^{23}}}\times 1.85\times {{10}^{21}}$
Simplifying the above equation gives the mass of $1.85\times {{10}^{21}}$ molecules of Y = 0.574g.
Since the total mass of the mixture is 0.688g, such that
Mass of $1.65\times {{10}^{21}}$ molecules of X + mass of $1.85\times {{10}^{21}}$ molecules of Y = 0.688g
Then, mass of $1.65\times {{10}^{21}}$ molecules of X = 0.688g - mass of $1.85\times {{10}^{21}}$ molecules of Y
Now, we have calculated the mass of $1.85\times {{10}^{21}}$ molecules of Y to be 0.574g.
Therefore, on subtracting 0.574g from 0.688g, we get
Mass of $1.65\times {{10}^{21}}$ molecules of X is = 0.114g.
Thus, mass of $6.022\times {{10}^{23}}$ molecules of X = $\dfrac{0.114g}{1.65\times {{10}^{21}}}\times 6.022\times {{10}^{23}}$
Simplifying the above equation and calculating we obtain, mass of $6.022\times {{10}^{23}}$ molecules of X = 41.60g.
Since, the mass of one mole of X (in grams), i.e. 41.60g is equal to the average or mean mass of one molecule of X (in amu). Therefore, the molecular mass of X is 41.60g.
The only option close to 41.60 is (C).
Hence, the correct option is (C).
Note: Molecular mass is generally expressed in atomic mass unit (amu) whereas the unit for molar mass is gram/mol. We are likely to make calculation mistakes, so carefully solve the question step by step to avoid any errors.
Complete answer:
Let us see what we have been given.
Number of molecules of X in the mixture = $1.65\times {{10}^{21}}$
Number of molecules of Y in the mixture = $1.85\times {{10}^{21}}$
Total mass of the mixture = 0.688g
Molecular mass of Y= 187
Molecular mass of Y is equal to the mean mass of one molecule of Y which is 187 (in atomic mass unit).
We know that one mole of a substance contains $6.022\times {{10}^{23}}$ molecules.
Therefore, one mole of Y contains $6.022\times {{10}^{23}}$ molecules and the mass of one mole of Y (in grams) is equal to the average or mean mass of one molecule of Y (in amu), i.e. 187.
Hence, we can write that
Mass of $6.022\times {{10}^{23}}$ molecules of Y = 187g
Then, we can say that the mass of $1.85\times {{10}^{21}}$ molecules of Y = $\dfrac{187g}{6.022\times {{10}^{23}}}\times 1.85\times {{10}^{21}}$
Simplifying the above equation gives the mass of $1.85\times {{10}^{21}}$ molecules of Y = 0.574g.
Since the total mass of the mixture is 0.688g, such that
Mass of $1.65\times {{10}^{21}}$ molecules of X + mass of $1.85\times {{10}^{21}}$ molecules of Y = 0.688g
Then, mass of $1.65\times {{10}^{21}}$ molecules of X = 0.688g - mass of $1.85\times {{10}^{21}}$ molecules of Y
Now, we have calculated the mass of $1.85\times {{10}^{21}}$ molecules of Y to be 0.574g.
Therefore, on subtracting 0.574g from 0.688g, we get
Mass of $1.65\times {{10}^{21}}$ molecules of X is = 0.114g.
Thus, mass of $6.022\times {{10}^{23}}$ molecules of X = $\dfrac{0.114g}{1.65\times {{10}^{21}}}\times 6.022\times {{10}^{23}}$
Simplifying the above equation and calculating we obtain, mass of $6.022\times {{10}^{23}}$ molecules of X = 41.60g.
Since, the mass of one mole of X (in grams), i.e. 41.60g is equal to the average or mean mass of one molecule of X (in amu). Therefore, the molecular mass of X is 41.60g.
The only option close to 41.60 is (C).
Hence, the correct option is (C).
Note: Molecular mass is generally expressed in atomic mass unit (amu) whereas the unit for molar mass is gram/mol. We are likely to make calculation mistakes, so carefully solve the question step by step to avoid any errors.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

