Answer
Verified
426.3k+ views
Hint: If a quantity is uniformly increasing, it should have a constant difference, d between any two consecutive values in the series. The collection of these values is known as an arithmetic progression. By identifying this difference, we can calculate an unknown value at any given instant.
Complete Step by Step Solution:
Let us consider an arithmetic progression with n number of terms. Let the initial term be a and the difference be d. Therefore the progression will be in the form as shown below.
$a,a+d,a+2d,....,a+\left( n-1 \right)d$ where n is an integer.
Therefore the value of the ${{p}^{th}}$ term will be equal to $a+\left( p-1 \right)d$. Using this expression let us find out the difference, d of this arithmetic progression.
It is given that in the third year, the production is 6000 units.
$\Rightarrow a+(p-1)d=6000$
For the third year, $p=3$. Therefore
$\Rightarrow a+(3-1)d=6000$
$\Rightarrow a+2d=6000$ ……(1)
For the seventh year, the production, $p=7$
$\Rightarrow a+(7-1)d=7000$
$\Rightarrow a+6d=7000$ ……(2)
Let us solve the equations (1) to (2) to a and d.
Equation (1) can be rewritten as
$\Rightarrow a=6000-2d$
Let us substitute the above data in equation (2)
$\Rightarrow 6000-2d+6d=7000$
$\Rightarrow 4d=1000\Rightarrow d=250$
Now substitute the value of the difference in (1) or (2) to get the initial value a. Let us substitute $d=250$ in (1)
$\Rightarrow a+2\times 250=6000$
$\Rightarrow a=5500$
We now have the required data to calculate ${{p}^{th}}$ term.
Let us calculate the production of TV in the tenth year $\left( p=10 \right)$.
$\Rightarrow a+\left( p-1 \right)d=5500+\left( 10-1 \right)250$
$\Rightarrow 5500+2250=7750$
Therefore the production will be 7750 units in the tenth year.
Note:
This problem can be solved intuitively without any of these formulas. If we notice the question, we can see that the production has increased by 1000 units in four years. Which is actually 250 units per year.
Complete Step by Step Solution:
Let us consider an arithmetic progression with n number of terms. Let the initial term be a and the difference be d. Therefore the progression will be in the form as shown below.
$a,a+d,a+2d,....,a+\left( n-1 \right)d$ where n is an integer.
Therefore the value of the ${{p}^{th}}$ term will be equal to $a+\left( p-1 \right)d$. Using this expression let us find out the difference, d of this arithmetic progression.
It is given that in the third year, the production is 6000 units.
$\Rightarrow a+(p-1)d=6000$
For the third year, $p=3$. Therefore
$\Rightarrow a+(3-1)d=6000$
$\Rightarrow a+2d=6000$ ……(1)
For the seventh year, the production, $p=7$
$\Rightarrow a+(7-1)d=7000$
$\Rightarrow a+6d=7000$ ……(2)
Let us solve the equations (1) to (2) to a and d.
Equation (1) can be rewritten as
$\Rightarrow a=6000-2d$
Let us substitute the above data in equation (2)
$\Rightarrow 6000-2d+6d=7000$
$\Rightarrow 4d=1000\Rightarrow d=250$
Now substitute the value of the difference in (1) or (2) to get the initial value a. Let us substitute $d=250$ in (1)
$\Rightarrow a+2\times 250=6000$
$\Rightarrow a=5500$
We now have the required data to calculate ${{p}^{th}}$ term.
Let us calculate the production of TV in the tenth year $\left( p=10 \right)$.
$\Rightarrow a+\left( p-1 \right)d=5500+\left( 10-1 \right)250$
$\Rightarrow 5500+2250=7750$
Therefore the production will be 7750 units in the tenth year.
Note:
This problem can be solved intuitively without any of these formulas. If we notice the question, we can see that the production has increased by 1000 units in four years. Which is actually 250 units per year.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it