
A man on a certain planet throws a body of mass $500gm$ with a velocity of $10m/s$ and catches it after $8$ seconds. Find the weight of the body on the planet.
Answer
445.8k+ views
Hint: In order to answer this question, to find the weight of the given body on the planet, we will first calculate the acceleration due to gravity with the help of the given initial velocity of the body and the time given of catching. And after that we can find the weight, as mass is given.
Complete step by step answer:
Let the acceleration due to gravity of the planet is $g$.
So, we have the formula in which it show the relation of time and acceleration:
$\therefore t = \dfrac{{2u}}{g}$
Here, $t$ is the time.
$u$ is the initial velocity.
and $g$ is the acceleration due to gravity of the planet.
$
\Rightarrow 8 = \dfrac{{2 \times 10}}{g} \\
\Rightarrow g = \dfrac{{20}}{8}m.{s^{ - 2}} \\
$
Now, we can find the weight of the body by applying the formula which relate the weight, mass and acceleration due to gravity:
$\therefore Weight\,of\,the\,body = m.g = \dfrac{{500}}{{1000}} \times \dfrac{{20}}{8} = \dfrac{{10}}{8}N$
Hence, the required weight of the body on the planet is $\dfrac{{10}}{8}N$ or $1.25N$.
Note: Now, a question arises here that why do we use Kilograms to measure weight instead of Newton in certain conditions? So, mass is the same everywhere on earth, weight is not - it can vary as much as \[0.7\% \] from the North Pole (heavy) to the mountains of Peru (light). This is in part caused by the rotation of the earth, and in part by the fact that the earth's surface is not (quite) a sphere. Or in simplest words, on the other planets except earth, weight will be often measured in the mass due to the different gravitational forces.
Complete step by step answer:
Let the acceleration due to gravity of the planet is $g$.
So, we have the formula in which it show the relation of time and acceleration:
$\therefore t = \dfrac{{2u}}{g}$
Here, $t$ is the time.
$u$ is the initial velocity.
and $g$ is the acceleration due to gravity of the planet.
$
\Rightarrow 8 = \dfrac{{2 \times 10}}{g} \\
\Rightarrow g = \dfrac{{20}}{8}m.{s^{ - 2}} \\
$
Now, we can find the weight of the body by applying the formula which relate the weight, mass and acceleration due to gravity:
$\therefore Weight\,of\,the\,body = m.g = \dfrac{{500}}{{1000}} \times \dfrac{{20}}{8} = \dfrac{{10}}{8}N$
Hence, the required weight of the body on the planet is $\dfrac{{10}}{8}N$ or $1.25N$.
Note: Now, a question arises here that why do we use Kilograms to measure weight instead of Newton in certain conditions? So, mass is the same everywhere on earth, weight is not - it can vary as much as \[0.7\% \] from the North Pole (heavy) to the mountains of Peru (light). This is in part caused by the rotation of the earth, and in part by the fact that the earth's surface is not (quite) a sphere. Or in simplest words, on the other planets except earth, weight will be often measured in the mass due to the different gravitational forces.
Recently Updated Pages
While covering a distance of 30km Ajeet takes 2 ho-class-11-maths-CBSE

Sanjeevani booti brought about by Lord Hanuman to cure class 11 biology CBSE

A police jeep on patrol duty on a national highway class 11 physics CBSE

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How much is 23 kg in pounds class 11 chemistry CBSE

Net gain of ATP in glycolysis a 6 b 2 c 4 d 8 class 11 biology CBSE
