Answer
Verified
461.7k+ views
Hint: To solve this problem, we will assume that after x years, the son will be half as old as his father.That is,we are taking the unknown quantity as x.
Complete step by step solution:
We are given that:
The age of a man in \[35\] years and that of his son in \[7\]years.
Now we need to find that,
After how many years will the son be half old as his father.
Age of man-years
Age of his son \[ = {\text{ }}7\] years
Let after x years the son’s age become half of that of father.
Hence, age after x years.
Age of man-years
Age of his son \[ = {\text{ }}\left( {x + 7} \right)\] years
According to this question:
$\begin{array}{*{20}{c}}
{ \Rightarrow \left( {x + 7} \right) = \dfrac{{\left( {x + 35} \right)}}{2}} \\
{ \Rightarrow 2\left( {x + 7} \right) = \left( {x + 35} \right)} \\
{ \Rightarrow 2x + 14 = x + 35} \\
{\therefore x = 21}
\end{array}$
After \[21\]years:
Age of man \[ = {\text{ }}\left( {x{\text{ }} + {\text{ }}35} \right){\text{ }} = {\text{ }}\left( {21 + 35} \right){\text{ }} = {\text{ }}56\] years
Age of son \[ = {\text{ }}\left( {x + 7} \right){\text{ }} = {\text{ }}\left( {21 + 7} \right){\text{ }} = {\text{ }}28\] years
So, after \[21\]years he will be half of his father’s age.
Note: We assumed their ages after x years then simply equate the equation according to question and calculated x i.e. how many years.
Complete step by step solution:
We are given that:
The age of a man in \[35\] years and that of his son in \[7\]years.
Now we need to find that,
After how many years will the son be half old as his father.
Age of man-years
Age of his son \[ = {\text{ }}7\] years
Let after x years the son’s age become half of that of father.
Hence, age after x years.
Age of man-years
Age of his son \[ = {\text{ }}\left( {x + 7} \right)\] years
According to this question:
$\begin{array}{*{20}{c}}
{ \Rightarrow \left( {x + 7} \right) = \dfrac{{\left( {x + 35} \right)}}{2}} \\
{ \Rightarrow 2\left( {x + 7} \right) = \left( {x + 35} \right)} \\
{ \Rightarrow 2x + 14 = x + 35} \\
{\therefore x = 21}
\end{array}$
After \[21\]years:
Age of man \[ = {\text{ }}\left( {x{\text{ }} + {\text{ }}35} \right){\text{ }} = {\text{ }}\left( {21 + 35} \right){\text{ }} = {\text{ }}56\] years
Age of son \[ = {\text{ }}\left( {x + 7} \right){\text{ }} = {\text{ }}\left( {21 + 7} \right){\text{ }} = {\text{ }}28\] years
So, after \[21\]years he will be half of his father’s age.
Note: We assumed their ages after x years then simply equate the equation according to question and calculated x i.e. how many years.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE