
A line intersects the y-axis and x-axis at a point P and Q respectively. If (2,-5) is the midpoint of PQ, then find the coordinates of P and Q.
Answer
616.5k+ views
Hint: It is given that the line intersects the x-axis and the y-axis at a certain point. Whenever a line intersects at the x-axis then the point of intersection can be taken as (x, 0) and when it cuts the y-axis the point of intersection is taken as (0, y). Using this concept along with the basic formula of the midpoint of any two points (x, y) and (p, q) we can get the answer.
Complete step-by-step answer:
Consider the line as shown in figure it intersects the y-axis and x-axis at points P and Q respectively.
Therefore the coordinates of P is (x, 0) and the coordinates of Q is (0, y).
And it is given that the midpoint of the line is (2, -5).
As we see that in the above coordinate x is positive and y is negative therefore the line is in the fourth quadrant as in the fourth quadrant x is positive and y is negative.
Now, apply the midpoint property, if (a, b) is the midpoint of the points (e, f) and (g, h).
$ \Rightarrow a = \dfrac{{e + g}}{2},{\text{ }}b = \dfrac{{f + h}}{2}$ So, use this property we have,
As (2, -5) is the midpoint of (x, 0) and (0, y)
$ \Rightarrow 2 = \dfrac{{x + 0}}{2},{\text{ }} - 5 = \dfrac{{0 + y}}{2}$
$ \Rightarrow 4 = x + 0,{\text{ - 10}} = 0 + y$
$ \Rightarrow x = 4{\text{ & }}y = - 10$
Therefore the coordinates of P is (4, 0) and the coordinates of Q is (0, -10)
So, this is the required answer.
Note: Whenever we face such type of problems the key concept is about the understanding that any general point on x axis can be taken as (x, 0) as the y-coordinate on x axis is zero, similarly any general point on y axis can be taken as (0, y) as the x-coordinate on y-axis is zero. Having the basic idea of the midpoint formula can also help getting the right answer.
Complete step-by-step answer:
Consider the line as shown in figure it intersects the y-axis and x-axis at points P and Q respectively.
Therefore the coordinates of P is (x, 0) and the coordinates of Q is (0, y).
And it is given that the midpoint of the line is (2, -5).
As we see that in the above coordinate x is positive and y is negative therefore the line is in the fourth quadrant as in the fourth quadrant x is positive and y is negative.
Now, apply the midpoint property, if (a, b) is the midpoint of the points (e, f) and (g, h).
$ \Rightarrow a = \dfrac{{e + g}}{2},{\text{ }}b = \dfrac{{f + h}}{2}$ So, use this property we have,
As (2, -5) is the midpoint of (x, 0) and (0, y)
$ \Rightarrow 2 = \dfrac{{x + 0}}{2},{\text{ }} - 5 = \dfrac{{0 + y}}{2}$
$ \Rightarrow 4 = x + 0,{\text{ - 10}} = 0 + y$
$ \Rightarrow x = 4{\text{ & }}y = - 10$
Therefore the coordinates of P is (4, 0) and the coordinates of Q is (0, -10)
So, this is the required answer.
Note: Whenever we face such type of problems the key concept is about the understanding that any general point on x axis can be taken as (x, 0) as the y-coordinate on x axis is zero, similarly any general point on y axis can be taken as (0, y) as the x-coordinate on y-axis is zero. Having the basic idea of the midpoint formula can also help getting the right answer.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which cell organelles are present in white blood C class 11 biology CBSE

What is the molecular geometry of BrF4 A square planar class 11 chemistry CBSE

Trending doubts
Difference Between Prokaryotic Cells and Eukaryotic Cells

Show that total energy of a freely falling body remains class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Name the metals and nonmetals in the first twenty class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

A binary star system consists of two stars of masses class 11 physics CBSE

