
What is a jump discontinuity of a graph?
Answer
504.3k+ views
Hint: The solution for this question is in the descriptive way, we come across different kinds of discontinuities, but here in this question we have to explain or discuss the Jump discontinuity in detailed way and taking an example and plotting a graph for the example we can have a complete picture of a jump discontinuity.
Complete step-by-step answer:
Jump Discontinuity is a classification or type of discontinuities in which the function jumps, or steps, from one point to another along the curve of the function, often splitting the curve into two separate sections. While continuous functions are often used within mathematics, not all functions are continuous. The point on the domain of a function that is discontinuous is called the discontinuity.
A jump discontinuity occurs when the right-hand and left-hand limits exist but are not equal.
Consider an Example of a function with a jump discontinuity:
The discontinuous function \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{x + 1} \\
{ - x}
\end{array}\,\,\,\,\,\,\begin{array}{*{20}{c}}
{x > 0} \\
{x \geqslant 0}
\end{array}} \right.\]
For \[x > 0\],
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \left( {x + 1} \right)\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 0 + 1\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 1\]
But, for \[x = 0\]
\[ \Rightarrow \,\,f\left( 0 \right) = 0\] (Therefore, f is continuous from the left at 0, but not the right.)
Here, in this example in which \[\mathop {\lim }\limits_{x \to {0^ + }} \] exists, and \[\mathop {\lim }\limits_{x \to {0^ - }} \] also exists, but they are not equal.
The graphical representation of above example is:
Jump discontinuities are also called "discontinuities of the first kind". These kinds of discontinuities are big breaks in the graph, but not breaks at vertical asymptotes (those are specifically called infinite or essential discontinuities). You’ll often see jump discontinuities in piecewise-defined functions. A function is never continuous at a jump discontinuity, and it’s never differentiable there, either.
Note: In this question they have mentioned about the jump discontinuity, suppose if they given any other discontinuity like infinite discontinuity, removable discontinuity, end point discontinuity or mixed continuity these are all the types of discontinuities we have to explain each type of discontinuities, by giving an suitable example it’s better to explain or understand.
Complete step-by-step answer:
Jump Discontinuity is a classification or type of discontinuities in which the function jumps, or steps, from one point to another along the curve of the function, often splitting the curve into two separate sections. While continuous functions are often used within mathematics, not all functions are continuous. The point on the domain of a function that is discontinuous is called the discontinuity.
A jump discontinuity occurs when the right-hand and left-hand limits exist but are not equal.
Consider an Example of a function with a jump discontinuity:
The discontinuous function \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}
{x + 1} \\
{ - x}
\end{array}\,\,\,\,\,\,\begin{array}{*{20}{c}}
{x > 0} \\
{x \geqslant 0}
\end{array}} \right.\]
For \[x > 0\],
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \left( {x + 1} \right)\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 0 + 1\]
\[ \Rightarrow \,\,\,\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 1\]
But, for \[x = 0\]
\[ \Rightarrow \,\,f\left( 0 \right) = 0\] (Therefore, f is continuous from the left at 0, but not the right.)
Here, in this example in which \[\mathop {\lim }\limits_{x \to {0^ + }} \] exists, and \[\mathop {\lim }\limits_{x \to {0^ - }} \] also exists, but they are not equal.
The graphical representation of above example is:
Jump discontinuities are also called "discontinuities of the first kind". These kinds of discontinuities are big breaks in the graph, but not breaks at vertical asymptotes (those are specifically called infinite or essential discontinuities). You’ll often see jump discontinuities in piecewise-defined functions. A function is never continuous at a jump discontinuity, and it’s never differentiable there, either.
Note: In this question they have mentioned about the jump discontinuity, suppose if they given any other discontinuity like infinite discontinuity, removable discontinuity, end point discontinuity or mixed continuity these are all the types of discontinuities we have to explain each type of discontinuities, by giving an suitable example it’s better to explain or understand.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

