Answer
Verified
390.3k+ views
Hint:When a ball is thrown upwards then there is some initial velocity $u$ and a final velocity $v$. The final velocity becomes zero at the highest point. And the force which works on the ball in this situation is the gravitational force, hence the acceleration a becomes -g(acceleration due to gravity is in opposite direction of motion when ball goes from ground to top).
Complete step by step answer:
Given that the juggler throws $n$ balls in one second. It implies that one ball takes \[\dfrac{1}{n}\] seconds to reach at the highest point. Three equations of motion are:
First equation: \[v~=~u~+at\]
Second equation: \[s=ut+\dfrac{1}{2}a{{t}^{2}}\]
Third equation: \[2as={{v}^{2}}-{{u}^{2}}\]
Let’s this time be t seconds, i.e. \[t=\dfrac{1}{n}\].
When a ball is thrown upwards then there is some initial velocity u and a final velocity $v$.The final velocity becomes zero at the highest point. And the force which works on the ball in this situation is the gravitational force, hence the acceleration a becomes -g(acceleration due to gravity is in opposite direction of motion when ball goes from ground to top).
Now putting \[v=0\] and \[a=-g\]in the first equation of motion, \[v=u+at\], we get: \[u=\dfrac{g}{n}\]. It means the initial velocity with which each ball is thrown upwards is \[\dfrac{g}{n}\]. Now let’s consider the motion to the highest point; initial velocity \[u=\dfrac{g}{n}\], final velocity \[v=0\], total distance (s)= maximum height that a ball gains (h). Applying third equation of motion and putting the above quantities, we observe that:
\[2as={{v}^{2}}-{{u}^{2}}\] changes to \[2gh={{0}^{2}}-\dfrac{{{g}^{2}}}{{{n}^{2}}}\].
\[\therefore h=\dfrac{g}{2{{n}^{2}}}\]
Therefore the maximum height taken by each ball when a juggler throws n balls in one second and also each ball is thrown whenever the previous one is at its highest point is \[\dfrac{g}{2{{n}^{2}}}\].
Note:According to the question $n$ balls are thrown each second, which means $n$ balls are thrown in one second. Then by unitary method we can say that one ball is thrown in \[\dfrac{1}{n}\] seconds. You can also directly calculate, without using the unitary method.
Complete step by step answer:
Given that the juggler throws $n$ balls in one second. It implies that one ball takes \[\dfrac{1}{n}\] seconds to reach at the highest point. Three equations of motion are:
First equation: \[v~=~u~+at\]
Second equation: \[s=ut+\dfrac{1}{2}a{{t}^{2}}\]
Third equation: \[2as={{v}^{2}}-{{u}^{2}}\]
Let’s this time be t seconds, i.e. \[t=\dfrac{1}{n}\].
When a ball is thrown upwards then there is some initial velocity u and a final velocity $v$.The final velocity becomes zero at the highest point. And the force which works on the ball in this situation is the gravitational force, hence the acceleration a becomes -g(acceleration due to gravity is in opposite direction of motion when ball goes from ground to top).
Now putting \[v=0\] and \[a=-g\]in the first equation of motion, \[v=u+at\], we get: \[u=\dfrac{g}{n}\]. It means the initial velocity with which each ball is thrown upwards is \[\dfrac{g}{n}\]. Now let’s consider the motion to the highest point; initial velocity \[u=\dfrac{g}{n}\], final velocity \[v=0\], total distance (s)= maximum height that a ball gains (h). Applying third equation of motion and putting the above quantities, we observe that:
\[2as={{v}^{2}}-{{u}^{2}}\] changes to \[2gh={{0}^{2}}-\dfrac{{{g}^{2}}}{{{n}^{2}}}\].
\[\therefore h=\dfrac{g}{2{{n}^{2}}}\]
Therefore the maximum height taken by each ball when a juggler throws n balls in one second and also each ball is thrown whenever the previous one is at its highest point is \[\dfrac{g}{2{{n}^{2}}}\].
Note:According to the question $n$ balls are thrown each second, which means $n$ balls are thrown in one second. Then by unitary method we can say that one ball is thrown in \[\dfrac{1}{n}\] seconds. You can also directly calculate, without using the unitary method.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
The milk of which one of these animals has more fat class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE