Answer
Verified
426k+ views
Hint: From the diagram, derive the equation of the balancing of the force. The torque of the centre of mass can be found to be equivalent to the product of the moment of inertia of the centre of mass and the angular acceleration of the body. Rearrange the equation in terms of friction. Substitute the torque in this and substitute the values. This will help you in answering this question.
Complete step by step answer:
It has been mentioned that the radius of the disk has been given as,
$r=20cm$
Mass of the body has been mentioned as,
$m=\dfrac{1}{2}Kg$
According to the diagram mentioned, we can write that,
$mg\sin \theta -f=m{{a}_{cm}}$…….. (1)
Where $f$be the force of friction.
The torque of the centre of mass can be found to be equivalent to the product of the moment of inertia of the centre of mass and the angular acceleration of the body. That is we can write that,
${{\tau }_{cm}}={{I}_{cm}}\cdot \alpha $
And also we can write that,
\[{{f}_{R}}=\dfrac{M{{R}^{2}}}{2}\times \left( \dfrac{{{a}_{cm}}}{{{R}^{2}}} \right)\]
Simplifying this equation can be written as,
\[{{f}_{R}}=\dfrac{M}{2}\times {{a}_{cm}}\]
Rearranging this equation can be written as,
\[{{a}_{cm}}=\dfrac{2f}{M}\]
Substituting this in equation (1) can be shown as,
\[mg\sin \theta -f=M\left( \dfrac{2f}{M} \right)\]
From this the force of friction can be found to be as,
\[f=\dfrac{mg\sin \theta }{3}\]
The angle of inclination has been mentioned as,
\[\theta =45{}^\circ \]
Substituting all these values in it will give,
\[f=\dfrac{1\times 10\times 1}{2\times 3\times \sqrt{2}}=\dfrac{5}{3\sqrt{2}}N\]
Hence the force of friction has been found to be,
\[f=\dfrac{5}{3\sqrt{2}}N\]
So, the correct answer is “Option B”.
Note: Centre of mass is the imaginary point of a body or a particle which is considered to be the point where the whole mass of the body is found to be concentrated. All the properties of the body will be shown by this particle. Frictional force is the opposition provided due to the surface body interactions.
Complete step by step answer:
It has been mentioned that the radius of the disk has been given as,
$r=20cm$
Mass of the body has been mentioned as,
$m=\dfrac{1}{2}Kg$
According to the diagram mentioned, we can write that,
$mg\sin \theta -f=m{{a}_{cm}}$…….. (1)
Where $f$be the force of friction.
The torque of the centre of mass can be found to be equivalent to the product of the moment of inertia of the centre of mass and the angular acceleration of the body. That is we can write that,
${{\tau }_{cm}}={{I}_{cm}}\cdot \alpha $
And also we can write that,
\[{{f}_{R}}=\dfrac{M{{R}^{2}}}{2}\times \left( \dfrac{{{a}_{cm}}}{{{R}^{2}}} \right)\]
Simplifying this equation can be written as,
\[{{f}_{R}}=\dfrac{M}{2}\times {{a}_{cm}}\]
Rearranging this equation can be written as,
\[{{a}_{cm}}=\dfrac{2f}{M}\]
Substituting this in equation (1) can be shown as,
\[mg\sin \theta -f=M\left( \dfrac{2f}{M} \right)\]
From this the force of friction can be found to be as,
\[f=\dfrac{mg\sin \theta }{3}\]
The angle of inclination has been mentioned as,
\[\theta =45{}^\circ \]
Substituting all these values in it will give,
\[f=\dfrac{1\times 10\times 1}{2\times 3\times \sqrt{2}}=\dfrac{5}{3\sqrt{2}}N\]
Hence the force of friction has been found to be,
\[f=\dfrac{5}{3\sqrt{2}}N\]
So, the correct answer is “Option B”.
Note: Centre of mass is the imaginary point of a body or a particle which is considered to be the point where the whole mass of the body is found to be concentrated. All the properties of the body will be shown by this particle. Frictional force is the opposition provided due to the surface body interactions.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE