Answer
Verified
494.1k+ views
Hint: Both the outcomes of the dice will be independent to each other. Apply the theorem of probability of the independent events.
Since a dice is always $6$ faced, numbered $1$ to $6$, the probability of getting any number from $1$ to $6$ on its rolling is $\dfrac{1}{6}$. And if it’s rolled twice, both the outcomes will be independent to each other.
$(i)$We have to calculate the probability of not getting $5$ on either of the rolling.
As discussed earlier, the probability of getting $5$ on the first rolling is $\dfrac{1}{6}$.
So, the probability of not getting $5$ on first rolling is $1 - \dfrac{1}{6}$ which is $\dfrac{5}{6}$.
Similarly, the probability of not getting $5$ on second rolling is also $\dfrac{5}{6}$.
And since both the outcomes are independent, the probability of not getting $5$ on either of the time is:
$P = \dfrac{5}{6} \times \dfrac{5}{6} = \dfrac{{25}}{{36}}$.
Hence, the required probability is$\dfrac{{25}}{{36}}$.
$(ii)$ Here we have to calculate the probability of getting $5$ exactly one time. Here we’ll have two cases:
Let’s suppose in the first case, we get $5$ on the first time and any other number on the second time. Then the probability will be:
$P = \dfrac{1}{6} \times \dfrac{5}{6} = \dfrac{5}{{36}}$.
In the second case, we get any other number the first time and $5$ second time. Probability in this case will be:
$P = \dfrac{5}{6} \times \dfrac{1}{6} = \dfrac{5}{{36}}$.
And both the cases are mutually exclusive. Then the total probability of getting $5$ exactly one time is the addition of probability of both the cases:
$
\Rightarrow P = \dfrac{5}{{36}} + \dfrac{5}{{36}}, \\
\Rightarrow P = \dfrac{{10}}{{36}}, \\
\Rightarrow P = \dfrac{5}{{18}}. \\
$
Hence, the required probability is$\dfrac{5}{{18}}$.
Note: If two events $A$ and $B$ are independent to each other, then the probability of occurrence of both the events is:
$P\left( {A{\text{ and }}B} \right) = P\left( A \right) \times P\left( B \right)$
While if two events $A$ and $B$ are mutually exclusive to each other, then the probability of occurrence of any one of them is:
$P\left( {A{\text{ or }}B} \right) = P\left( A \right) + P\left( B \right)$.
Since a dice is always $6$ faced, numbered $1$ to $6$, the probability of getting any number from $1$ to $6$ on its rolling is $\dfrac{1}{6}$. And if it’s rolled twice, both the outcomes will be independent to each other.
$(i)$We have to calculate the probability of not getting $5$ on either of the rolling.
As discussed earlier, the probability of getting $5$ on the first rolling is $\dfrac{1}{6}$.
So, the probability of not getting $5$ on first rolling is $1 - \dfrac{1}{6}$ which is $\dfrac{5}{6}$.
Similarly, the probability of not getting $5$ on second rolling is also $\dfrac{5}{6}$.
And since both the outcomes are independent, the probability of not getting $5$ on either of the time is:
$P = \dfrac{5}{6} \times \dfrac{5}{6} = \dfrac{{25}}{{36}}$.
Hence, the required probability is$\dfrac{{25}}{{36}}$.
$(ii)$ Here we have to calculate the probability of getting $5$ exactly one time. Here we’ll have two cases:
Let’s suppose in the first case, we get $5$ on the first time and any other number on the second time. Then the probability will be:
$P = \dfrac{1}{6} \times \dfrac{5}{6} = \dfrac{5}{{36}}$.
In the second case, we get any other number the first time and $5$ second time. Probability in this case will be:
$P = \dfrac{5}{6} \times \dfrac{1}{6} = \dfrac{5}{{36}}$.
And both the cases are mutually exclusive. Then the total probability of getting $5$ exactly one time is the addition of probability of both the cases:
$
\Rightarrow P = \dfrac{5}{{36}} + \dfrac{5}{{36}}, \\
\Rightarrow P = \dfrac{{10}}{{36}}, \\
\Rightarrow P = \dfrac{5}{{18}}. \\
$
Hence, the required probability is$\dfrac{5}{{18}}$.
Note: If two events $A$ and $B$ are independent to each other, then the probability of occurrence of both the events is:
$P\left( {A{\text{ and }}B} \right) = P\left( A \right) \times P\left( B \right)$
While if two events $A$ and $B$ are mutually exclusive to each other, then the probability of occurrence of any one of them is:
$P\left( {A{\text{ or }}B} \right) = P\left( A \right) + P\left( B \right)$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE