Answer
Verified
467.4k+ views
Hint: Assume the distance travelled by the delivery boy for one side of the trip to be D. Then calculate the time \[{{T}_{1}}\] & \[{{T}_{2}}\], where \[{{T}_{1}}\] is the time taken on onward journey & \[{{T}_{2}}\] is the time taken on return journey. Then work on the speed (Return), and calculate the average speed.
Complete step by step solution:D = distance travelled by the bike in each direction.
\[{{t}_{1}}\] = time spent on onward journey.
\[{{t}_{2}}\]= time spent on the return journey.
Thus, the total distance = D + D = 2D
And by the formula,
$Speed=\dfrac{Dist.}{Time}$
Or, \[{{S}_{1}}=\dfrac{{{D}_{1}}}{{{t}_{1}}}\] ; \[{{S}_{2}}=\dfrac{{{D}_{2}}}{{{t}_{2}}}\]
Rearranging,
\[{{t}_{1}}=\dfrac{{{D}_{1}}}{{{S}_{1}}}\] ; \[{{t}_{2}}=\dfrac{{{D}_{2}}}{{{S}_{2}}}\]
Now, we know that,
\[\text{Average Speed=}\dfrac{\text{Total Distance}}{\text{Total Time Taken}}\]
We got, Total Distance = 2D
& Total Time
\[\begin{align}
& =\dfrac{{{D}_{1}}}{{{S}_{1}}}+\dfrac{{{D}_{2}}}{{{S}_{2}}} \\
& =\dfrac{({{S}_{1}}+{{S}_{2}})D}{{{S}_{1}}{{S}_{2}}} \\
\end{align}\] \[\because {{D}_{1}}={{D}_{2}}\]
\[\begin{align}
& =\dfrac{2D}{\dfrac{({{S}_{1}}+{{S}_{2}})D}{{{S}_{1}}{{S}_{2}}}}=\dfrac{2{{S}_{1}}{{S}_{2}}}{({{S}_{1}}+{{S}_{2}})} \\
& =94mph \\
& =24-\dfrac{12.5}{100}\times 24 \\
& =24-3=21mph \\
& =\dfrac{2\times {{S}_{1}}{{S}_{2}}}{({{S}_{1}}+{{S}_{2}})} \\
& =2\times \dfrac{21\times 24}{(24+21)} \\
& =2\times \dfrac{21\times 24}{45} \\
& =22.4mph \\
\end{align}\]
Substituting these values in the formula, we get,
\[=\dfrac{2D}{\dfrac{({{S}_{1}}+{{S}_{2}})D}{{{S}_{1}}{{S}_{2}}}}=\dfrac{2{{S}_{1}}{{S}_{2}}}{({{S}_{1}}+{{S}_{2}})}\] ………….(1)
Try to remember this general formula for a total average speed problem.
Step 2: Now let’s calculate the decreased speed of the bike.
So the original speed was \[=94mph\]
Now let’s calculate the decreased speed,
Decreased Speed = Original Speed – 12.5% of original speed
Putting values,
\[\begin{align}
& =24-\dfrac{12.5}{100}\times 24 \\
& =24-3=21mph \\
\end{align}\]
Step 3:
Putting values in the equation (1),
We get,
\[\begin{align}
& =\dfrac{2\times {{S}_{1}}{{S}_{2}}}{({{S}_{1}}+{{S}_{2}})} \\
& =2\times \dfrac{21\times 24}{(24+21)} \\
& =2\times \dfrac{21\times 24}{45} \\
& =22.4mph \\
\end{align}\]
So, the average speed of the whole journey is 22.4 mph.
Hence, the correct answer is C.
Note: These questions come in the category where either you solve them using the formula directly, or derive the same formula and solve. SO, it is advised to remember the small formulas that can help you solve your problem easier and faster. Also, make sure to use the right units.
Complete step by step solution:D = distance travelled by the bike in each direction.
\[{{t}_{1}}\] = time spent on onward journey.
\[{{t}_{2}}\]= time spent on the return journey.
Thus, the total distance = D + D = 2D
And by the formula,
$Speed=\dfrac{Dist.}{Time}$
Or, \[{{S}_{1}}=\dfrac{{{D}_{1}}}{{{t}_{1}}}\] ; \[{{S}_{2}}=\dfrac{{{D}_{2}}}{{{t}_{2}}}\]
Rearranging,
\[{{t}_{1}}=\dfrac{{{D}_{1}}}{{{S}_{1}}}\] ; \[{{t}_{2}}=\dfrac{{{D}_{2}}}{{{S}_{2}}}\]
Now, we know that,
\[\text{Average Speed=}\dfrac{\text{Total Distance}}{\text{Total Time Taken}}\]
We got, Total Distance = 2D
& Total Time
\[\begin{align}
& =\dfrac{{{D}_{1}}}{{{S}_{1}}}+\dfrac{{{D}_{2}}}{{{S}_{2}}} \\
& =\dfrac{({{S}_{1}}+{{S}_{2}})D}{{{S}_{1}}{{S}_{2}}} \\
\end{align}\] \[\because {{D}_{1}}={{D}_{2}}\]
\[\begin{align}
& =\dfrac{2D}{\dfrac{({{S}_{1}}+{{S}_{2}})D}{{{S}_{1}}{{S}_{2}}}}=\dfrac{2{{S}_{1}}{{S}_{2}}}{({{S}_{1}}+{{S}_{2}})} \\
& =94mph \\
& =24-\dfrac{12.5}{100}\times 24 \\
& =24-3=21mph \\
& =\dfrac{2\times {{S}_{1}}{{S}_{2}}}{({{S}_{1}}+{{S}_{2}})} \\
& =2\times \dfrac{21\times 24}{(24+21)} \\
& =2\times \dfrac{21\times 24}{45} \\
& =22.4mph \\
\end{align}\]
Substituting these values in the formula, we get,
\[=\dfrac{2D}{\dfrac{({{S}_{1}}+{{S}_{2}})D}{{{S}_{1}}{{S}_{2}}}}=\dfrac{2{{S}_{1}}{{S}_{2}}}{({{S}_{1}}+{{S}_{2}})}\] ………….(1)
Try to remember this general formula for a total average speed problem.
Step 2: Now let’s calculate the decreased speed of the bike.
So the original speed was \[=94mph\]
Now let’s calculate the decreased speed,
Decreased Speed = Original Speed – 12.5% of original speed
Putting values,
\[\begin{align}
& =24-\dfrac{12.5}{100}\times 24 \\
& =24-3=21mph \\
\end{align}\]
Step 3:
Putting values in the equation (1),
We get,
\[\begin{align}
& =\dfrac{2\times {{S}_{1}}{{S}_{2}}}{({{S}_{1}}+{{S}_{2}})} \\
& =2\times \dfrac{21\times 24}{(24+21)} \\
& =2\times \dfrac{21\times 24}{45} \\
& =22.4mph \\
\end{align}\]
So, the average speed of the whole journey is 22.4 mph.
Hence, the correct answer is C.
Note: These questions come in the category where either you solve them using the formula directly, or derive the same formula and solve. SO, it is advised to remember the small formulas that can help you solve your problem easier and faster. Also, make sure to use the right units.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it