
A conservative force \[\vec F = (6.0x - 12)\hat{i}\,N\] where, $x$ is in metres, acts on a particle moving along an X axis. The potential energy $U$ associated with this force is assigned a value of $27J$ at $x = 0$ .
(a) Write an expression for U as a function of $x$ ,with U in Joules and $x$ in metres.
(b) What is the maximum positive potential energy? At what (c) negative value and (d) positive value of $x$ is the potential energy equal to zero?
Answer
505.8k+ views
Hint: In physics, when the force acts on a body and it causes a displacement in the body , it’s called body has done some work and when this work done by a force is independent of path taken, then it’s called conservative force and this conservative force is related with potential energy as $F = - \dfrac{{\partial U}}{{\partial x}}$.
Complete step by step answer:
(a) It’s given us that $U(0) = 27J$ and we can write $F = - \dfrac{{\partial U}}{{\partial x}}$ as
\[ - U = \int\limits_0^x {(6x - 12)dx} \]
$\Rightarrow - U = (3{x^2} - 12x)$
$\therefore U = 27 + 12x - 3{x^2}$
Hence, the function of U is $U(x) = 27 + 12x - 3{x^2}$
(b) To find maximum potential energy its derivative must be zero which is the given force, hence
\[(6.0x - 12) = 0\]
$x = 2$
Hence finding $U(x) = 27 + 12x - 3{x^2}$ at $x = 2$
$U(2) = 27 + 24 - 12$
${U_{\max }}(2) = 39Joule$
Hence, maximum potential energy is ${U_{\max }}(2) = 39\,Joule$
(c) Equating this equation $U(x) = 27 + 12x - 3{x^2}$ to zero we get,
$27 + 12x - 3{x^2} = 0$
Or Taking common factor we can write
$(x + 1.6)(x - 5.6) = 0$
Equate both factors to zero we get,
$\therefore x = - 1.6\,m$
(d) From part (c) we get, $(x + 1.6)(x - 5.6) = 0$
$x = 5.6$
Hence, $x = 5.6$ is the positive value of $x$ at which potential energy is zero.
Note: It should be remembered that, partial derivative of potential energy is taken because force is a vector quantity and its derivative has to be taken in every component’s direction. The relation between force and potential energy can also be written in form of gradient at $F = - \vec \nabla U$
Complete step by step answer:
(a) It’s given us that $U(0) = 27J$ and we can write $F = - \dfrac{{\partial U}}{{\partial x}}$ as
\[ - U = \int\limits_0^x {(6x - 12)dx} \]
$\Rightarrow - U = (3{x^2} - 12x)$
$\therefore U = 27 + 12x - 3{x^2}$
Hence, the function of U is $U(x) = 27 + 12x - 3{x^2}$
(b) To find maximum potential energy its derivative must be zero which is the given force, hence
\[(6.0x - 12) = 0\]
$x = 2$
Hence finding $U(x) = 27 + 12x - 3{x^2}$ at $x = 2$
$U(2) = 27 + 24 - 12$
${U_{\max }}(2) = 39Joule$
Hence, maximum potential energy is ${U_{\max }}(2) = 39\,Joule$
(c) Equating this equation $U(x) = 27 + 12x - 3{x^2}$ to zero we get,
$27 + 12x - 3{x^2} = 0$
Or Taking common factor we can write
$(x + 1.6)(x - 5.6) = 0$
Equate both factors to zero we get,
$\therefore x = - 1.6\,m$
(d) From part (c) we get, $(x + 1.6)(x - 5.6) = 0$
$x = 5.6$
Hence, $x = 5.6$ is the positive value of $x$ at which potential energy is zero.
Note: It should be remembered that, partial derivative of potential energy is taken because force is a vector quantity and its derivative has to be taken in every component’s direction. The relation between force and potential energy can also be written in form of gradient at $F = - \vec \nabla U$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

