A committee of 6 teachers is to be formed from 5 male teachers and 8 female teachers. If the committee is selected at random, what is the probability that it has an equal number of male and female teachers?
A)$\dfrac{1}{{10}}$
B)$\dfrac{{140}}{{429}}$
C) $\dfrac{{150}}{{429}}$
D) $\dfrac{{160}}{{429}}$
E) $\dfrac{{170}}{{429}}$
Answer
Verified
403.8k+ views
Hint: First we will know the meaning of the terms permutation and combination which are the important topics in probability.
In Probability, the term permutation refers to the process of arranging the outcomes in the order. Here, the order should be followed to arrange the items.
In Probability, the term combination refers to the process of selecting the outcomes in which it does not matter. Here, the order is not followed to arrange the items.
Formula to be used:
The formula to calculate the permutation is as follows.
\[{}^n{P_r} = n(n - 1)(n - 2).......(n - r + 1)\]
$ = \dfrac{{n!}}{{(n - r)!}}$ (! Is a mathematical symbol called the factorial)
Where, $n$ denotes the number of objects from which the permutation is formed and $r$ denotes the number of objects used to form the permutation.
The formula to calculate the combination is as follows.
${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Where, $n$ denotes the number of objects from which the combination is formed and $r$denotes the number of objects used to form the combination.
Complete step-by-step solution:
Our question is to select $6$ teachers from a set of $5$ male teachers and $8$ female teachers. Here we have to select the outcomes so that we are using the technique of combination.
And our exact question is to select $6$ teachers such that the males and females are equal.
First, we shall find the number of ways in which $6$ teachers can be selected from a set of $5$ male teachers and $8$ female teachers.
That is, \[{}^5{C_5}{}^8{C_1} + {}^5{C_4}{}^8{C_2} + {}^5{C_3}{}^8{C_3} + {}^5{C_2}{}^8{C_4} + {}^5{C_1}{}^8{C_{5}} + {}^5{C_0}{}^8{C_6} = 1716\]----$\left( 1 \right)$
Next we need to select $6$ teachers such that the males and females are equal.
That is, \[{}^5{C_3}{}^8{C_3} = 560\]----$\left( 2 \right)$
We know the formula of probability as,
$\text{Probability} =\dfrac{\text{Favourable Outcome}}{\text{Total Outcome}}$
So,
$\text{Probability} =\dfrac{560}{1716}$
$\text{Probability} =\dfrac{140}{429}$ (Cancelling numerator and denominator by 4)
Hence, the required probability will be $\dfrac{{140}}{{429}}$ . (Dividing $\left( 2 \right)$ by $\left( 1 \right)$)
Note: In Probability, it is the fraction of favourable outcome and total outcome. Here our total outcome is forming the committee by selecting 6 teachers out of 13(5-Male+8-Female) and the favourable outcome is 6 teachers(3-Female+3-Male). so we use the formula of combination as ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
So our favourable outcome is ${}^5{C_3}\times {}^8{C_3}= \dfrac{{5!}}{{3!\left( {5-3}\right)!}} \times\dfrac{{8!}}{{3!\left( {8-3}\right)!}}$= $560$, and total outcome is ${}^{13}{C_6} = \dfrac{{{13}!}}{{6!\left( {13 - 6} \right)!}} = 1716$
Now the probability will be $= \dfrac{\text{Favourable Outcome}}{\text{Total Outcome}}$
$=\dfrac{560}{1716}$
$=\dfrac{140}{429}$ (Cancelling numerator and denominator by 4)
Hence option B is the correct answer.
In Probability, the term permutation refers to the process of arranging the outcomes in the order. Here, the order should be followed to arrange the items.
In Probability, the term combination refers to the process of selecting the outcomes in which it does not matter. Here, the order is not followed to arrange the items.
Formula to be used:
The formula to calculate the permutation is as follows.
\[{}^n{P_r} = n(n - 1)(n - 2).......(n - r + 1)\]
$ = \dfrac{{n!}}{{(n - r)!}}$ (! Is a mathematical symbol called the factorial)
Where, $n$ denotes the number of objects from which the permutation is formed and $r$ denotes the number of objects used to form the permutation.
The formula to calculate the combination is as follows.
${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Where, $n$ denotes the number of objects from which the combination is formed and $r$denotes the number of objects used to form the combination.
Complete step-by-step solution:
Our question is to select $6$ teachers from a set of $5$ male teachers and $8$ female teachers. Here we have to select the outcomes so that we are using the technique of combination.
And our exact question is to select $6$ teachers such that the males and females are equal.
First, we shall find the number of ways in which $6$ teachers can be selected from a set of $5$ male teachers and $8$ female teachers.
That is, \[{}^5{C_5}{}^8{C_1} + {}^5{C_4}{}^8{C_2} + {}^5{C_3}{}^8{C_3} + {}^5{C_2}{}^8{C_4} + {}^5{C_1}{}^8{C_{5}} + {}^5{C_0}{}^8{C_6} = 1716\]----$\left( 1 \right)$
Next we need to select $6$ teachers such that the males and females are equal.
That is, \[{}^5{C_3}{}^8{C_3} = 560\]----$\left( 2 \right)$
We know the formula of probability as,
$\text{Probability} =\dfrac{\text{Favourable Outcome}}{\text{Total Outcome}}$
So,
$\text{Probability} =\dfrac{560}{1716}$
$\text{Probability} =\dfrac{140}{429}$ (Cancelling numerator and denominator by 4)
Hence, the required probability will be $\dfrac{{140}}{{429}}$ . (Dividing $\left( 2 \right)$ by $\left( 1 \right)$)
Note: In Probability, it is the fraction of favourable outcome and total outcome. Here our total outcome is forming the committee by selecting 6 teachers out of 13(5-Male+8-Female) and the favourable outcome is 6 teachers(3-Female+3-Male). so we use the formula of combination as ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
So our favourable outcome is ${}^5{C_3}\times {}^8{C_3}= \dfrac{{5!}}{{3!\left( {5-3}\right)!}} \times\dfrac{{8!}}{{3!\left( {8-3}\right)!}}$= $560$, and total outcome is ${}^{13}{C_6} = \dfrac{{{13}!}}{{6!\left( {13 - 6} \right)!}} = 1716$
Now the probability will be $= \dfrac{\text{Favourable Outcome}}{\text{Total Outcome}}$
$=\dfrac{560}{1716}$
$=\dfrac{140}{429}$ (Cancelling numerator and denominator by 4)
Hence option B is the correct answer.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
State the laws of reflection of light
What is the chemical name of Iron class 11 chemistry CBSE