
A coin is tossed twice. Find the probability distribution of the number of heads.
Answer
605.7k+ views
Hint: In this question first find out the probability of getting a head as well as not getting a head when a coin is tossed, later on in the solution construct all possible cases for getting a head as well as not getting a head because this time coin is tossed two times, so use this concept to reach the solution of the question.
Complete step-by-step answer:
Given a coin is tossed twice.
As we know a coin has two sides.
So, total number of outcomes $ = 2$
To get a head when a coin is tossed (p)$ = \dfrac{{{\text{Favorable outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{1}{2}$
For not getting a head when a coin is tossed $\left( q \right) = 1 - \left( p \right)$
As the total probability is always 1.
$ \Rightarrow \left( q \right) = 1 - \left( p \right) = 1 - \dfrac{1}{2} = \dfrac{1}{2}$
As the coin is tossed twice.
So, construct different cases for getting a head.
$1.$For not getting any head i.e. when we tossed the coin twice head does not appears$ = q.q = \dfrac{1}{2}.\dfrac{1}{2} = \dfrac{1}{4}$
$2.$Head appears only once, it can happen in two ways when we tossed the first time we got head and in the second time head does not appear, and when we tossed again the first time we did not got head but in second time we got a head.
$ = pq + qp = \dfrac{1}{2}.\dfrac{1}{2} + \dfrac{1}{2}.\dfrac{1}{2} = \dfrac{1}{4} + \dfrac{1}{4} = \dfrac{2}{4} = \dfrac{1}{2}$
$3.$Always get a head i.e. when we tossed the coin twice head appears all the time $ = p.p = \dfrac{1}{2}.\dfrac{1}{2} = \dfrac{1}{4}$
So, the required probability distribution is shown below.
$\begin{array}{*{20}{c}}
{\left( H \right)}&0&1&2 \\
{\left( {{P_h}} \right)}&{\dfrac{1}{4}}&{\dfrac{1}{2}}&{\dfrac{1}{4}}
\end{array}$
So, this is the required probability distribution of the number of heads (H).
Note: In such types of questions the key concept we have to remember is that always recall the property of probability which is stated above, then construct different cases as above to get the required probability distribution of the number of heads as shown above which is the required answer.
Complete step-by-step answer:
Given a coin is tossed twice.
As we know a coin has two sides.
So, total number of outcomes $ = 2$
To get a head when a coin is tossed (p)$ = \dfrac{{{\text{Favorable outcomes}}}}{{{\text{Total outcomes}}}} = \dfrac{1}{2}$
For not getting a head when a coin is tossed $\left( q \right) = 1 - \left( p \right)$
As the total probability is always 1.
$ \Rightarrow \left( q \right) = 1 - \left( p \right) = 1 - \dfrac{1}{2} = \dfrac{1}{2}$
As the coin is tossed twice.
So, construct different cases for getting a head.
$1.$For not getting any head i.e. when we tossed the coin twice head does not appears$ = q.q = \dfrac{1}{2}.\dfrac{1}{2} = \dfrac{1}{4}$
$2.$Head appears only once, it can happen in two ways when we tossed the first time we got head and in the second time head does not appear, and when we tossed again the first time we did not got head but in second time we got a head.
$ = pq + qp = \dfrac{1}{2}.\dfrac{1}{2} + \dfrac{1}{2}.\dfrac{1}{2} = \dfrac{1}{4} + \dfrac{1}{4} = \dfrac{2}{4} = \dfrac{1}{2}$
$3.$Always get a head i.e. when we tossed the coin twice head appears all the time $ = p.p = \dfrac{1}{2}.\dfrac{1}{2} = \dfrac{1}{4}$
So, the required probability distribution is shown below.
$\begin{array}{*{20}{c}}
{\left( H \right)}&0&1&2 \\
{\left( {{P_h}} \right)}&{\dfrac{1}{4}}&{\dfrac{1}{2}}&{\dfrac{1}{4}}
\end{array}$
So, this is the required probability distribution of the number of heads (H).
Note: In such types of questions the key concept we have to remember is that always recall the property of probability which is stated above, then construct different cases as above to get the required probability distribution of the number of heads as shown above which is the required answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

