
A coin is so biased that the probability of falling head when tossed is \[\dfrac{1}{4}\]. If the coin is tossed 5 times the probability of obtaining 2 heads and 3 tails, with heads occurring in succession is:
(a) \[\dfrac{5\times {{3}^{3}}}{{{4}^{5}}}\]
(b) \[\dfrac{{{3}^{3}}}{{{5}^{4}}}\]
(c) \[\dfrac{{{3}^{3}}}{{{4}^{4}}}\]
(d) \[\dfrac{{{3}^{3}}}{{{4}^{5}}}\]
Answer
503.1k+ views
Hint: For solving this question you should know about the concept of probability. In this question we will first calculate all the possibilities which are possible according to our question and that will be our complete results and then from that we will select as our requirement. And at the end we will take care of both results. That will be our final answer.
Complete step by step answer:
According to the question it is asked that A coin is so biased that the probability of falling head when tossed is \[\dfrac{1}{4}\]. If the coin is tossed 5 times the probability of obtaining 2 heads and 3 tails is.
So, \[P\left( H \right)=\dfrac{1}{4}\] and \[P\left( T \right)=\dfrac{3}{4}\]
Hence, the required probability will be HHTTT
\[=\dfrac{1}{4}.\dfrac{1}{4}.\dfrac{3}{4}.\dfrac{3}{4}.\dfrac{3}{4}\]
Now., consider HHTTT.
Since, HH has to be together, we consider HH as one item.
Hence, the total number of arrangements of 4 items in which 3 are repeated are \[\dfrac{4!}{3!}=4\].
Hence, HHTTT can be internally operated in 4 ways considering that the heads occur in succession. Therefore, the required probability will be \[=\dfrac{{{3}^{3}}}{{{4}^{5}}}.4=\dfrac{{{3}^{3}}}{{{4}^{4}}}\].
So, the correct answer is “Option A”.
Note: For solving these types of questions, always understand the condition clearly. If the conditions are not clear then these will give us the wrong answer. And count every single term according to the given conditions and if there is any term left then the probability will be wrong and that will be wrong to this.
Complete step by step answer:
According to the question it is asked that A coin is so biased that the probability of falling head when tossed is \[\dfrac{1}{4}\]. If the coin is tossed 5 times the probability of obtaining 2 heads and 3 tails is.
So, \[P\left( H \right)=\dfrac{1}{4}\] and \[P\left( T \right)=\dfrac{3}{4}\]
Hence, the required probability will be HHTTT
\[=\dfrac{1}{4}.\dfrac{1}{4}.\dfrac{3}{4}.\dfrac{3}{4}.\dfrac{3}{4}\]
Now., consider HHTTT.
Since, HH has to be together, we consider HH as one item.
Hence, the total number of arrangements of 4 items in which 3 are repeated are \[\dfrac{4!}{3!}=4\].
Hence, HHTTT can be internally operated in 4 ways considering that the heads occur in succession. Therefore, the required probability will be \[=\dfrac{{{3}^{3}}}{{{4}^{5}}}.4=\dfrac{{{3}^{3}}}{{{4}^{4}}}\].
So, the correct answer is “Option A”.
Note: For solving these types of questions, always understand the condition clearly. If the conditions are not clear then these will give us the wrong answer. And count every single term according to the given conditions and if there is any term left then the probability will be wrong and that will be wrong to this.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

