
A card is selected at random from a well-shuffled pack of $52$ cards.
Find the probability that the selected card is
$(1)$A black coloured queen
$(2)$not a king
Answer
609k+ views
Hint- Probability is the ratio of favourable events to total number of events. Probability of not a king \[P\left( {B'} \right) = 1 - P\left( B \right)\].
As it is given $52$ cards well shuffled. so, for a given experiment the number of equally likely outcomes we take as \[n = 52\].
$(1)$Now let A be the event that the selected card is a black coloured queen and we know that in a deck of $52$ cards only $2$ black coloured queen cards are there i.e. queen of spade or club.
The number of favourable outcomes is $2$.
\[\therefore P\left( A \right) = \frac{2}{{52}} = \frac{1}{{26}}\]
$(2)$Now for this case let B be the event that the selected card is a king. The number of favourable outcomes is$4$as we know that in a deck of $52$ cards only $4$ black king cards are there.
\[\therefore P\left( B \right) = \frac{4}{{52}} = \frac{1}{{13}}\]
Then, let ${\text{B'}}$be the event that the selected card is not a king.
\[\therefore P\left( {B'} \right) = 1 - P\left( B \right) = 1 - \frac{1}{{13}} = \frac{{12}}{{13}}\]
Hence the answer is \[\frac{{12}}{{13}}\].
Note: Probability questions are based on the number of outcomes by total outcomes. Probability can neither be negative nor be greater than $1$.A deck has $52$ cards having a set of diamonds, clubs, hearts and spades each having $13$ cards. $P\left( A \right)$is a short way to write probability of event A.
As it is given $52$ cards well shuffled. so, for a given experiment the number of equally likely outcomes we take as \[n = 52\].
$(1)$Now let A be the event that the selected card is a black coloured queen and we know that in a deck of $52$ cards only $2$ black coloured queen cards are there i.e. queen of spade or club.
The number of favourable outcomes is $2$.
\[\therefore P\left( A \right) = \frac{2}{{52}} = \frac{1}{{26}}\]
$(2)$Now for this case let B be the event that the selected card is a king. The number of favourable outcomes is$4$as we know that in a deck of $52$ cards only $4$ black king cards are there.
\[\therefore P\left( B \right) = \frac{4}{{52}} = \frac{1}{{13}}\]
Then, let ${\text{B'}}$be the event that the selected card is not a king.
\[\therefore P\left( {B'} \right) = 1 - P\left( B \right) = 1 - \frac{1}{{13}} = \frac{{12}}{{13}}\]
Hence the answer is \[\frac{{12}}{{13}}\].
Note: Probability questions are based on the number of outcomes by total outcomes. Probability can neither be negative nor be greater than $1$.A deck has $52$ cards having a set of diamonds, clubs, hearts and spades each having $13$ cards. $P\left( A \right)$is a short way to write probability of event A.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

