
A car $A$ is travelling on a straight level road with a speed of $60km{h^{ - 1}}$ . It is followed by another car $B$ which is moving with a speed of $70km{h^{ - 1}}$ . When the distance between them is $2.5km$ , the car $B$ is given a deceleration of $20km{h^{ - 2}}$ .After what distance and time will the car $B$ catch up car $A$
Answer
500.4k+ views
Hint: In this problem the two cars moves in the same direction with the velocity $60km{h^{ - 1}}$ and $70km{h^{ - 1}}$ respectively as shown in the figure below and the deceleration of the car $B$ is given as $20km{h^{ - 2}}$ we need to use the formula $s = ut + \dfrac{1}{2}a{t^2}$ to find the acceleration and time.
Complete step-by-step solution:
Given
Speed of car $A = 60km{h^{ - 1}}$
Speed of car $B = 70km{h^{ - 1}}$
Distance between car $B$ and $A = 2.5km$
deceleration, $a = - 20km{h^{ - 2}}$
For car $A$
${s_1} = ut = 60t$ ………..$\left( 1 \right)$
For car $B$
${s_2} = ut + \dfrac{1}{2}a{t^2}$
Substituting the given value we get
${s_2} = 70t + \dfrac{1}{2}\left( { - 20} \right){t^2}$
${s_2} = 70t - 10{t^2}$ …………$\left( 2 \right)$
From the diagram it is clear that $2.5 = {s_2} - {s_1}$ ……….$\left( 3 \right)$
Substituting equation $\left( 1 \right)$ and equation $\left( 2 \right)$ in equation $\left( 3 \right)$
$2.5 = 70t - 10{t^2} - 60t$
On simplifying
$10{t^2} - 10t + 2.5 = 0$
On factorization the above equation we get
$t = 0.5h$
Substituting in equation $\left( 2 \right)$
${s_2} = 70\left( {0.5} \right) - 10{\left( {0.5} \right)^2}$
${s_2} = 32.5km$
Hence the distance is $32.5km$ and time is $t = 0.5h$
Note: Since the speed of two cars are given in terms of $km{h^{ - 1}}$ and distance in $km$ we can do calculations by considering the same unit and after calculation we will get time $h$ and distance in $km$ .
Complete step-by-step solution:
Given
Speed of car $A = 60km{h^{ - 1}}$
Speed of car $B = 70km{h^{ - 1}}$
Distance between car $B$ and $A = 2.5km$
deceleration, $a = - 20km{h^{ - 2}}$
For car $A$
${s_1} = ut = 60t$ ………..$\left( 1 \right)$
For car $B$
${s_2} = ut + \dfrac{1}{2}a{t^2}$
Substituting the given value we get
${s_2} = 70t + \dfrac{1}{2}\left( { - 20} \right){t^2}$
${s_2} = 70t - 10{t^2}$ …………$\left( 2 \right)$
From the diagram it is clear that $2.5 = {s_2} - {s_1}$ ……….$\left( 3 \right)$
Substituting equation $\left( 1 \right)$ and equation $\left( 2 \right)$ in equation $\left( 3 \right)$
$2.5 = 70t - 10{t^2} - 60t$
On simplifying
$10{t^2} - 10t + 2.5 = 0$
On factorization the above equation we get
$t = 0.5h$
Substituting in equation $\left( 2 \right)$
${s_2} = 70\left( {0.5} \right) - 10{\left( {0.5} \right)^2}$
${s_2} = 32.5km$
Hence the distance is $32.5km$ and time is $t = 0.5h$
Note: Since the speed of two cars are given in terms of $km{h^{ - 1}}$ and distance in $km$ we can do calculations by considering the same unit and after calculation we will get time $h$ and distance in $km$ .
Recently Updated Pages
Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

