
A can do work in 15 days and B can do the same work in 20 days. If A and B have done work for 4 days together, the fraction of work left?
Answer
605.4k+ views
Hint – The number of days on which the work can be completed by A and B separately is given to us. Now A and B have worked together for 4 days and we need to find the fraction of work which is left. SO let the total work to be done by A and B be P. Using the unitary methods calculate the work done by A and B by per day and using this calculate the work done by them together in 4 days.
“Complete step-by-step answer:”
It is given that A can do a work in 15 days and B can do a work in 20 days.
If A and B have done work for 4 days together then we have to find out the fraction of work left.
Let the total work be P.
So, the work done by A per day is the ratio of total work divided by the number of days in which A can do the work.
So, the work done by A per day $ = \dfrac{P}{{15}}$.
Similarly, the work done by B per day $ = \dfrac{P}{{20}}$.
Now the work done by A and B in four days is
$ \Rightarrow \left( {\dfrac{P}{{15}} + \dfrac{P}{{20}}} \right) \times 4$
Now simplify this we have
$ \Rightarrow \left( {\dfrac{P}{{15}} + \dfrac{P}{{20}}} \right) \times 4 = \dfrac{{28}}{{60}}P$
So, the work left is total work minus the work done by A and B in four days.
So, work left $ = P - \dfrac{{28}}{{60}}P = \dfrac{{32}}{{60}}P = \dfrac{8}{{15}}P$
So, the fraction of work left is $\dfrac{8}{{15}}$.
So, this is the required answer.
Note – Whenever we face such types of problems the key concept here is to simply apply a unitary method to calculate the work done by the individuals per day then use the conditions and information given in the question to get the required entity.
“Complete step-by-step answer:”
It is given that A can do a work in 15 days and B can do a work in 20 days.
If A and B have done work for 4 days together then we have to find out the fraction of work left.
Let the total work be P.
So, the work done by A per day is the ratio of total work divided by the number of days in which A can do the work.
So, the work done by A per day $ = \dfrac{P}{{15}}$.
Similarly, the work done by B per day $ = \dfrac{P}{{20}}$.
Now the work done by A and B in four days is
$ \Rightarrow \left( {\dfrac{P}{{15}} + \dfrac{P}{{20}}} \right) \times 4$
Now simplify this we have
$ \Rightarrow \left( {\dfrac{P}{{15}} + \dfrac{P}{{20}}} \right) \times 4 = \dfrac{{28}}{{60}}P$
So, the work left is total work minus the work done by A and B in four days.
So, work left $ = P - \dfrac{{28}}{{60}}P = \dfrac{{32}}{{60}}P = \dfrac{8}{{15}}P$
So, the fraction of work left is $\dfrac{8}{{15}}$.
So, this is the required answer.
Note – Whenever we face such types of problems the key concept here is to simply apply a unitary method to calculate the work done by the individuals per day then use the conditions and information given in the question to get the required entity.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

