When a bullet is fired at a target, its velocity gets decreased by half after penetrating $30\,cm$ into it. The additional thickness it will penetrate before coming to rest will be:
A. $30$
B. $10$
C. $40$
D. $50$
Answer
Verified
405.3k+ views
Hint:When a bullet is fired and it starts to penetrate in a target, then it will cover some distance with negative acceleration and its final velocity will be zero and we will determine the additional thickness bullet will penetrate by using newton’s equation of motion ${v^2} - {u^2} = 2aS$.
Complete step by step answer:
Let us assume in first $30\,cm$ penetration the initial velocity of bullet was $u$ and final velocity behalf of initial velocity as it’s given so we can write as $v = \dfrac{u}{2}$
$S = 0.3\,m$
Now, putting these values in equation ${v^2} - {u^2} = 2aS$ we get,
$\dfrac{{{u^2}}}{4} = {u^2} + 2a(0.3)$
$\Rightarrow \dfrac{{ - 3{u^2}}}{4} = 0.6a \to (i)$
Now, let us assume the bullet further penetrate through distance say $S'$ and final velocity in this case will be zero as bullet will came to rest and initial velocity will be $\dfrac{u}{2}$ , putting these values in equation ${v^2} - {u^2} = 2aS$ we get,
$\dfrac{{ - {u^2}}}{4} = 2aS' \to (ii)$
From equations $(i)and(ii)$ we can write as:
$S' = 0.1\,m$
$\therefore S' = 10\,cm$
So, the thickness to which bullet will further penetrate the target is $S' = 10cm$
Hence, the correct option is B.
Note: It’s important to remember that, the final velocity with which first $30cm$ penetration happen will became the initial velocity of final penetration of $10cm$ and other two equations of motion as $v = u + at$ , $S = ut + \dfrac{1}{2}a{t^2}$ . These three equations are called newton’s equation of motion and whole classical mechanics of motion can be understand through these equations.>
Complete step by step answer:
Let us assume in first $30\,cm$ penetration the initial velocity of bullet was $u$ and final velocity behalf of initial velocity as it’s given so we can write as $v = \dfrac{u}{2}$
$S = 0.3\,m$
Now, putting these values in equation ${v^2} - {u^2} = 2aS$ we get,
$\dfrac{{{u^2}}}{4} = {u^2} + 2a(0.3)$
$\Rightarrow \dfrac{{ - 3{u^2}}}{4} = 0.6a \to (i)$
Now, let us assume the bullet further penetrate through distance say $S'$ and final velocity in this case will be zero as bullet will came to rest and initial velocity will be $\dfrac{u}{2}$ , putting these values in equation ${v^2} - {u^2} = 2aS$ we get,
$\dfrac{{ - {u^2}}}{4} = 2aS' \to (ii)$
From equations $(i)and(ii)$ we can write as:
$S' = 0.1\,m$
$\therefore S' = 10\,cm$
So, the thickness to which bullet will further penetrate the target is $S' = 10cm$
Hence, the correct option is B.
Note: It’s important to remember that, the final velocity with which first $30cm$ penetration happen will became the initial velocity of final penetration of $10cm$ and other two equations of motion as $v = u + at$ , $S = ut + \dfrac{1}{2}a{t^2}$ . These three equations are called newton’s equation of motion and whole classical mechanics of motion can be understand through these equations.>
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
State the laws of reflection of light