Answer
Verified
371.7k+ views
Hint:When a bullet is fired and it starts to penetrate in a target, then it will cover some distance with negative acceleration and its final velocity will be zero and we will determine the additional thickness bullet will penetrate by using newton’s equation of motion ${v^2} - {u^2} = 2aS$.
Complete step by step answer:
Let us assume in first $30\,cm$ penetration the initial velocity of bullet was $u$ and final velocity behalf of initial velocity as it’s given so we can write as $v = \dfrac{u}{2}$
$S = 0.3\,m$
Now, putting these values in equation ${v^2} - {u^2} = 2aS$ we get,
$\dfrac{{{u^2}}}{4} = {u^2} + 2a(0.3)$
$\Rightarrow \dfrac{{ - 3{u^2}}}{4} = 0.6a \to (i)$
Now, let us assume the bullet further penetrate through distance say $S'$ and final velocity in this case will be zero as bullet will came to rest and initial velocity will be $\dfrac{u}{2}$ , putting these values in equation ${v^2} - {u^2} = 2aS$ we get,
$\dfrac{{ - {u^2}}}{4} = 2aS' \to (ii)$
From equations $(i)and(ii)$ we can write as:
$S' = 0.1\,m$
$\therefore S' = 10\,cm$
So, the thickness to which bullet will further penetrate the target is $S' = 10cm$
Hence, the correct option is B.
Note: It’s important to remember that, the final velocity with which first $30cm$ penetration happen will became the initial velocity of final penetration of $10cm$ and other two equations of motion as $v = u + at$ , $S = ut + \dfrac{1}{2}a{t^2}$ . These three equations are called newton’s equation of motion and whole classical mechanics of motion can be understand through these equations.>
Complete step by step answer:
Let us assume in first $30\,cm$ penetration the initial velocity of bullet was $u$ and final velocity behalf of initial velocity as it’s given so we can write as $v = \dfrac{u}{2}$
$S = 0.3\,m$
Now, putting these values in equation ${v^2} - {u^2} = 2aS$ we get,
$\dfrac{{{u^2}}}{4} = {u^2} + 2a(0.3)$
$\Rightarrow \dfrac{{ - 3{u^2}}}{4} = 0.6a \to (i)$
Now, let us assume the bullet further penetrate through distance say $S'$ and final velocity in this case will be zero as bullet will came to rest and initial velocity will be $\dfrac{u}{2}$ , putting these values in equation ${v^2} - {u^2} = 2aS$ we get,
$\dfrac{{ - {u^2}}}{4} = 2aS' \to (ii)$
From equations $(i)and(ii)$ we can write as:
$S' = 0.1\,m$
$\therefore S' = 10\,cm$
So, the thickness to which bullet will further penetrate the target is $S' = 10cm$
Hence, the correct option is B.
Note: It’s important to remember that, the final velocity with which first $30cm$ penetration happen will became the initial velocity of final penetration of $10cm$ and other two equations of motion as $v = u + at$ , $S = ut + \dfrac{1}{2}a{t^2}$ . These three equations are called newton’s equation of motion and whole classical mechanics of motion can be understand through these equations.>
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE