
A box contains 20 balls bearing numbers 1,2,3,…,20 respectively. A ball is drawn at random from the box, what is the probability that the number on the ball is
$(i)$An odd number
$(ii)$Divisible by 2 or 3
$(iii)$A prime number
$(iv)$Not divisible by 10
$
{\text{A}}{\text{.}} \\
(i)\dfrac{1}{3} \\
(ii)\dfrac{{12}}{{19}} \\
(iii)\dfrac{2}{5} \\
(iv)\dfrac{9}{{10}} \\
$ $
{\text{B}}{\text{.}} \\
(i)\dfrac{1}{2} \\
(ii)\dfrac{{13}}{{20}} \\
(iii)\dfrac{2}{5} \\
(iv)\dfrac{9}{{10}} \\
$ $
{\text{C}}{\text{.}} \\
(i)\dfrac{1}{3} \\
(ii)\dfrac{{18}}{{37}} \\
(iii)\dfrac{2}{5} \\
(iv)\dfrac{2}{5} \\
$ $
{\text{D}}{\text{.}} \\
(i)\dfrac{1}{2} \\
(ii)\dfrac{{15}}{{29}} \\
(iii)\dfrac{2}{5} \\
(iv)\dfrac{2}{5} \\
$
Answer
606.6k+ views
Hint- Here, we will proceed by using the general formula for finding the probability of occurrence of an event. Here, the favourable cases will be evaluated by knowing all the odd numbers out of 1 to 20, all the numbers divisible by 2 or 3 out of 1 to 20, all the prime numbers out of 1 to 20 and all the numbers that are not divisible by 10 out of 1 to 20.
Complete step-by-step answer:
Given, we are having a box containing 20 balls having numbers 1,2,3,….,20 respectively on them.
As we know that the general formula for the probability is given by
Probability of occurrence of an event$ = \dfrac{{{\text{Number of favourable cases}}}}{{{\text{Total number of possible cases}}}}{\text{ }} \to {\text{(1)}}$
Here, a ball is selected at random from the box so any one of the 20 balls can occur.
Total number of possible cases = 20
$(i)$ Here, the favourable case is that the number on the selected ball is an odd number.
As, odd numbered balls are the balls with numbers 1,3,5,7,9,11,13,15,17,19 (total 10 balls)
Number of favourable cases = 10
Using the formula given by equation (1), we get
Probability that the number on the selected ball is an odd number$ = \dfrac{{{\text{10}}}}{{{\text{20}}}} = \dfrac{1}{2}$.
$(ii)$ Here, the favourable case is that the number on the selected ball is divisible by 2 or 3.
The balls that have numbers divisible by 2 or 3 are the balls with numbers 2,3,4,6,8,9,10,12,14,15,16,18,20 (total 13 balls)
Number of favourable cases = 13
Using the formula given by equation (1), we get
Probability that the number on the selected ball is divisible by 2 or 3$ = \dfrac{{{\text{13}}}}{{{\text{20}}}}$.
$(iii)$ Here, the favourable case is that the number on the selected ball is a prime number.
As, prime numbered balls are the balls with numbers 2,3,5,7,11,13,17,19 (total 8 balls)
Number of favourable cases = 8
Using the formula given by equation (1), we get
Probability that the number on the selected ball is a prime number$ = \dfrac{{\text{8}}}{{{\text{20}}}} = \dfrac{2}{5}$.
$(iv)$ Here, the favourable case is that the number on the selected ball is not divisible by 10.
As, odd numbered balls are the balls with numbers 1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19 (total 18 balls)
Number of favourable cases = 18
Using the formula given by equation (1), we get
Probability that the number on the selected ball is not divisible by 10 $ = \dfrac{{{\text{18}}}}{{{\text{20}}}} = \dfrac{9}{{10}}$.
Hence, option B is correct.
Note- In this particular problem, out of numbers from 1 to 20 there are 10 odd numbers (i.e., 1,3,5,7,9,11,13,15,17,19) and 10 even numbers (i.e., 2,4,6,8,10,12,14,16,18,20). Also, numbers out of 1 to 20 that are not divisible by 10 can be determined as (20-2)=18 where 20 represents the total numbers and 2 represents the numbers that are divisible by 10 (which are 10 and 20).
Complete step-by-step answer:
Given, we are having a box containing 20 balls having numbers 1,2,3,….,20 respectively on them.
As we know that the general formula for the probability is given by
Probability of occurrence of an event$ = \dfrac{{{\text{Number of favourable cases}}}}{{{\text{Total number of possible cases}}}}{\text{ }} \to {\text{(1)}}$
Here, a ball is selected at random from the box so any one of the 20 balls can occur.
Total number of possible cases = 20
$(i)$ Here, the favourable case is that the number on the selected ball is an odd number.
As, odd numbered balls are the balls with numbers 1,3,5,7,9,11,13,15,17,19 (total 10 balls)
Number of favourable cases = 10
Using the formula given by equation (1), we get
Probability that the number on the selected ball is an odd number$ = \dfrac{{{\text{10}}}}{{{\text{20}}}} = \dfrac{1}{2}$.
$(ii)$ Here, the favourable case is that the number on the selected ball is divisible by 2 or 3.
The balls that have numbers divisible by 2 or 3 are the balls with numbers 2,3,4,6,8,9,10,12,14,15,16,18,20 (total 13 balls)
Number of favourable cases = 13
Using the formula given by equation (1), we get
Probability that the number on the selected ball is divisible by 2 or 3$ = \dfrac{{{\text{13}}}}{{{\text{20}}}}$.
$(iii)$ Here, the favourable case is that the number on the selected ball is a prime number.
As, prime numbered balls are the balls with numbers 2,3,5,7,11,13,17,19 (total 8 balls)
Number of favourable cases = 8
Using the formula given by equation (1), we get
Probability that the number on the selected ball is a prime number$ = \dfrac{{\text{8}}}{{{\text{20}}}} = \dfrac{2}{5}$.
$(iv)$ Here, the favourable case is that the number on the selected ball is not divisible by 10.
As, odd numbered balls are the balls with numbers 1,2,3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19 (total 18 balls)
Number of favourable cases = 18
Using the formula given by equation (1), we get
Probability that the number on the selected ball is not divisible by 10 $ = \dfrac{{{\text{18}}}}{{{\text{20}}}} = \dfrac{9}{{10}}$.
Hence, option B is correct.
Note- In this particular problem, out of numbers from 1 to 20 there are 10 odd numbers (i.e., 1,3,5,7,9,11,13,15,17,19) and 10 even numbers (i.e., 2,4,6,8,10,12,14,16,18,20). Also, numbers out of 1 to 20 that are not divisible by 10 can be determined as (20-2)=18 where 20 represents the total numbers and 2 represents the numbers that are divisible by 10 (which are 10 and 20).
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

